
eProtect Integration Guide

December 2022

eProtect API V3.0

Document Version 4.19

Worldpay eProtect Integration Guide 4.19

All information whether text or graphics, contained in this manual is confidential and proprietary information of FIS and is provided to you solely
for the purpose of assisting you in using a FIS product. All such information is protected by copyright laws and international treaties. No part of
this manual may be reproduced or transmitted in any form or by any means, electronic, mechanical or otherwise for any purpose without the
express written permission of FIS. The possession, viewing, or use of the information contained in this manual does not transfer any intellectual
property rights or grant a license to use this information or any software application referred to herein for any purpose other than that for which it
was provided. Information in this manual is presented "as is" and neither FIS or any other party assumes responsibility for typographical errors,
technical errors, or other inaccuracies contained in this document. This manual is subject to change without notice and does not represent a
commitment on the part FIS or any other party. FIS does not warrant that the information contained herein is accurate or complete.

Worldpay, the logo and any associated brand names are trademarks or registered trademarks of FIS and/or its affiliates in the US, UK or other
countries. All other trademarks are the property of their respective owners and all parties herein have consented to their trademarks appearing in
this manual. Any use by you of the trademarks included herein must have express written permission of the respective owner.

Copyright © 2003-2022, FIS and/or its affiliates. ALL RIGHTS RESERVED.

CONTENTS

 About This Guide

Intended Audience...vii
Revision History ...vii
Document Structure ..xi
Documentation Set ...xi
Typographical Conventions ...xii
Contact Information..xii

Chapter 1 Introduction
eProtect Overview... 2

Using eProtect with ISO 8583, 610 and HHMI.. 4
How eProtect Works ... 5
Getting Started with eProtect .. 6

Migrating From Previous Versions of the eProtect API... 6
From eProtect with jQuery 1.4.2 ... 6
From JavaScript Browser API to iFrame... 6

Browser and Mobile Operating System Compatibility ... 7
Communication Protocol Requirement ... 8

eProtect Support for Apple Pay™ / Apple Pay on the Web .. 8
eProtect Support for Google Pay™ .. 9
eProtect Support for Visa Checkout™ .. 9

Getting Started with Visa Checkout .. 9
Requirements for Using Visa Checkout .. 10

jQuery Version .. 11
Certification and Testing Environments .. 11

Pre-Live Environment Limitations and Maintenance Schedule....................................... 13
Transitioning from Certification to Production ... 13
eProtect-Specific Response Codes .. 13
eProtect Registration ID Duplicate Detection.. 15
Setting Timeout Values... 15

Creating a Customized CSS for iFrame.. 18
CSS iFrame Validation and Customization Features.. 18
Using Web Developer Tools ... 23
Reviewing your CSS with Worldpay ... 23

CSS Properties Not Listed .. 24
iFrame Accessibility .. 25
© 2022 FIS and/or its affiliates. All rights reserved.

 eProtect Integration Guide V4.19
iii

Contents

iv
Chapter 2 Integration and Testing
Integrating Customer Browser JavaScript API Into Your Checkout Page 28

Integration Steps... 28
Loading the eProtect API and jQuery ... 29
Specifying the eProtect API Request Fields ... 30
Specifying the eProtect API Response Fields .. 31
Handling the Mouse Click ... 31
Intercepting the Checkout Form Submission .. 34
Handling Callbacks for Success, Failure, and Timeout .. 34

Success Callbacks .. 34
Failure Callbacks... 35
Timeout Callbacks... 36

Detecting the Availability of the eProtect API.. 36
Using the Customer Browser JavaScript API for Apple Pay on the Web 37
Using the Customer Browser JavaScript API for Visa Checkout .. 39
Adding Visa Checkout to the eProtect Customer Browser JavaScript API........................... 40

Requesting and Configuring the API Key, Encryption Key, and
.. External Client ID41
Sending Worldpay the Required Fields... 41

Integrating iFrame into your Checkout Page .. 42
Integration Steps... 42
Loading the iFrame ... 42
Configuring the iFrame ... 43
Capturing the Enter Event from the iFrame .. 48
Calling the iFrame for the Registration ID... 48
Calling the iFrame for the Checkout ID... 48

Notes on the PCI Non-Sensitive Value Feature.. 49
Calling the iFrame for the Checkout PIN .. 50
Calling the iFrame for the Registration ID and Checkout PIN... 50
Handling Callbacks ... 51

Handling Callbacks When Using checkoutCombinedMode .. 52
Handling Errors - iFrame Version 3... 55
Handling Errors - iFrame Version 4... 55

Integrating eProtect Into Your Mobile Application... 58
Creating the POST Request ... 58

Sample Request.. 59
Sample Response... 59
Sample Response - Method of Payment not Identified... 60

Using the Worldpay Mobile API for Apple Pay.. 61
Creating a POST Request for an Apple Pay Transaction ... 63
Sample Apple Pay POST Request ... 64
Sample Apple Pay POST Response... 65

Using the Worldpay Mobile API for Visa Checkout... 65
© 2022 FIS and/or its affiliates. All rights reserved.

 eProtect Integration Guide V4.19

Contents
Sending Worldpay the Required Fields... 67
Sample Visa Checkout POST Request... 67
Sample Visa Checkout POST Response.. 68

Using the Worldpay Mobile API for Google Pay ... 68
Recurring Payments with Apple Pay and Google Pay.. 71

Collecting Diagnostic Information ... 72
Transaction Examples When Using cnpAPI ... 73

Transaction Types and Examples... 73
Authorization Transactions ... 74

Authorization Request Structure ... 74
Authorization Response Structure .. 75

Sale Transactions ... 77
Sale Request Structure ... 77
Sale Response Structure .. 78

Register Token Transactions .. 80
Register Token Request ... 80
Register Token Response... 81

Force Capture Transactions ... 81
Force Capture Request... 82
Force Capture Response .. 83

Capture Given Auth Transactions... 84
Capture Given Auth Request .. 84
Capture Given Auth Response ... 86

Credit Transactions... 87
Credit Request Transaction .. 87
Credit Response ... 88

Testing and Certification ... 90
Testing eProtect Transactions .. 91

Appendix A Code Samples and Other Information
HTML Checkout Page Examples.. 96

HTML Example for Non-eProtect Checkout Page .. 96
HTML Example for JavaScript API-Integrated Checkout Page .. 97
HTML Example for Version 3 Hosted iFrame-Integrated Checkout Page 100
HTML Example for Version 4 Hosted iFrame-Integrated Checkout
..Page105

Information Sent to Order Processing Systems.. 110
Information Sent Without Integrating eProtect .. 110
Information Sent with Browser-Based eProtect Integration .. 110
Information Sent with Mobile API-Based Application Integration.. 111

cnpAPI Elements for eProtect... 112
cardValidationNum.. 113
checkoutId... 113
© 2022 FIS and/or its affiliates. All rights reserved.

 eProtect Integration Guide V4.19
v

Contents

vi
expDate... 115
paypage .. 116
paypageRegistrationId .. 117
registerTokenRequest... 118
registerTokenResponse.. 119
token ... 120

Appendix B CSS Properties for iFrame API
CSS Property Groups ... 122
Properties Excluded From White List.. 135

Appendix C Sample eProtect Integration Checklist

Index
© 2022 FIS and/or its affiliates. All rights reserved.

 eProtect Integration Guide V4.19

© 2022 FIS and/or its affiliates. All rights reserved.

 eProtect Integration Guide V4.19

About This Guide

This guide provides information on integrating eProtect, which, when used together with Omnitoken, will
reduce your exposure to sensitive cardholder data and significantly reduce your risk of payment data
theft. It also explains how to perform eProtect transaction testing and certification with Worldpay.

Intended Audience
This document is intended for technical personnel who will be setting up and maintaining payment
processing.

Revision History
This document has been revised as follows:

TABLE 1 Document Revision History

Doc.
Version Description Location(s)

4.19 Added a note for using High Availability with the Mobile API POST
option.

Chapter 1

Changed additional instances of the maximum field length value for
orderId from 256 to 25.

Chapter 2

Removed Note on alternative to submitting an Auth/Sale transaction
(and submitting a Register Token transaction) as it no longer applies.

Chapter 2

4.18 Added information on new optional checkoutWithEnter property
for capturing the Enter key message event from the iFrame.

Chapter 2,
Appendix A

4.17 Added two new optional properties for configuring a custom iFrame
title and custom labels without using the CSS: iFrameTitle and
label.

Chapter 2,
Appendix A

Changed an incorrect maximum field length value for orderId from
256 to 25.
vi

About This Guide

vi
4.16 Updated Sample Apple Pay POST Request example text with
missing spaces.

Chapter 2

4.15 Added information on new iFrame version 4:
https://request.eprotect.vantivprelive.com/eProtec
t/js/eProtect-iframe-client4.min.js. iFrame version 4
adds accessibility features including customizable error messages
using the new customErrorMessages property.

Chapter 1,
Chapter 2, and
Appendix A

4.14 Removed information on jQuery as a required library for loading the
eProtect client. eProtect uses plain JavaScript instead.

Chapter 1 and
Chapter 2

4.13 Added example text for an Apple Pay POST Request. Chapter 2

Corrected spelling error in example text for
maskAfterSuccessValue.

Chapter 2,
Appendix A

4.12 Added a section, “Using eProtect ISO 8583, 610, and HHMI” with
references to the appropriate guides to Chapter 1; removed the
section, “Transaction Examples When Using ISO8583, 610, and
HHMI” from Chapter 2.

Chapter 1 and
Chapter 2

Added information on checkoutCombinedMode, including a new
section and code example.

Chapter 2

Updated the flow description and figure in the section, “Using the
Worldpay Mobile API for Google Pay” for clarity.

Chapter 2

4.11 Updated API sample code in Appendix A to include example for
EBT/SNAP PAN length validation.

Appendix A

4.10 Added information on two new parameters (minPanLength and
maxPanLength) allowing ability to adjust the EBT/SNAP PAN
length validation.

Chapter 2,
Appendix A

4.9 Re-worded various instructions in Apple Pay and Google Pay
implementation for clarification.

Chapter 1

Added information on an update to Font Awesome in iFrame
(required due to updated Visa Logo).

Chapter 1

Added new iFrame properties, enhancedUxVersion (related to
new mandate for Visa logo) and maskAfterSuccessValue
(related to previously-inputted values returned).

Chapter 2,
Appendix A

4.8 Added two eProtect-specific response codes related to EBT/SNAP
PIN numbers (Table 1-3).

Chapter 1

4.7 Added information on using the pciNonsensitive attribute to
utilize MOD10 checking for private label cards (set to false).

Chapter 2

TABLE 1 Document Revision History (Continued)

Doc.
Version Description Location(s)
© 2022 FIS and/or its affiliates. All rights reserved.

 eProtect Integration Guide V4.19

https://request.eprotect.vantivprelive.com/eProtect/js/eProtect- iframe-client4.min.js
https://request.eprotect.vantivprelive.com/eProtect/js/eProtect- iframe-client4.min.js

About This Guide
4.6 For EBT/SNAP PIN, added a new property for PIN placeholder text,
information Information on PIN error code handling, and information
on EBT multi-tender payments.

Chapter 2

Added new encryptionKey parameter for Visa Checkout along
with a new pre-live testing site
(https://www.testvantivcnp.com/checkout/checkout4VisaCheckout-pr
elive-sandbox.jsp).

Chapter 2

Changed the maximum field length for orderId from 25 to 256, per
an update of the cpnAPI (v12.19).

Chapter 2 and
Appendix A

Updated the ApplePay PKPayment token URL referencing Apple
documentation.

Chapter 2

Updated the cnpAPI version to 12.19. All

4.5 Added section on timeout values; added references to the new
section in other chapters and Appendix C.

Chapter 1, 2 and
Appendix C

4.4 Removed PWS information due to end of product life.Added
information on testing

All

Added information in the testing section on the use of PCI
non-sensitive values.

Chapter 2

Updated flow graphics. Chapter 1

4.3 Added information on new Checkout PIN and checkoutPinMode for
iFrame and JavaScript API modes (for EBT/SNAP cards).

Chapter 2

Added two new URLs for testing/certification of EBT PAN and PIN
values.

Chapter 1 and 2

4.2 Corrected the ‘cvv2’ element in Table 2-5 and in Appendix A (as a
formField variable).

Chapter 2,
Appendix A

Added the location element to the register token response
element and example

Chapter 2,
Appendix A

Updated the cnpAPI version to 12.15. All

4.1 Removed optional pcinonsensitive parameter from examples to
prevent accidental use if cutting and pasting code from the guide.

Chapter 2,
Appendix A

Corrected part of the following line in sample code:
typeof eProtectiframeClient was changed to
typeof EprotectIframeClient

Chapter 2,
Appendix A

Updated for cnpAPI Rel. 12.12 (no changes affecting eProtect). All

TABLE 1 Document Revision History (Continued)

Doc.
Version Description Location(s)
© 2022 FIS and/or its affiliates. All rights reserved.

 eProtect Integration Guide V4.19
ix

About This Guide

x

4.0 Removed ‘Enterprise’ terminology from the guide due to the
replacement of the Litle Vault with the Omnitoken solution (and the
retirement of eCommerce eProtect Guide). Also folded in some
sections and information from the eCommerce eProtect Guide.

All

TABLE 1 Document Revision History (Continued)

Doc.
Version Description Location(s)
© 2022 FIS and/or its affiliates. All rights reserved.

 eProtect Integration Guide V4.19

About This Guide
Document Structure
This manual contains the following sections:

Chapter 1, "Introduction"
This chapter provides an overview of the eProtect feature, and the initial steps required to get started with
eProtect.

Chapter 2, "Integration and Testing"
This chapter describes the steps required to integrate the eProtect feature as part of your checkout page,
transaction examples, and information on eProtect Testing and Certification.

Appendix A, "Code Samples and Other Information"
This appendix provides code examples and reference material related to integrating the eProtect feature.

Appendix B, "CSS Properties for iFrame API"
This appendix provides a list of CSS Properties for use with the iFrame implementation of eProtect.

Appendix C, "Sample eProtect Integration Checklist"
This appendix provides a sample of the eProtect Integration Checklist for use during your Implementation
process.

Documentation Set
The Worldpay eCommerce documentation set includes the items listed below:

• Worldpay eComm iQ Reporting and Analytics User Guide

• Worldpay eComm cnpAPI Reference Guide

• Worldpay eComm Chargeback API Reference Guide

• Worldpay eComm Chargeback Process Guide

• Worldpay eComm PayFac API Reference Guide

• Worldpay eComm PayFac Portal User Guide

• Worldpay eComm cnpAPI Differences Guide

• Worldpay eComm Scheduled Secure Reports Reference Guide

• Worldpay eComm Chargeback XML and Support Documentation API Reference Guide (Legacy)
© 2022 FIS and/or its affiliates. All rights reserved.

 eProtect Integration Guide V4.19
xi

About This Guide

xi
Typographical Conventions
Table 2 describes the conventions used in this guide.

Contact Information
This section provides contact information for organizations within Worldpay.

Worldpay Contact Center - For technical issues related to eProtect in production for ISO 8583, 610
Interface, and other Core platforms issues.

Technical Support - For eCommerce technical issues such as file transmission errors, email Technical
Support. A Technical Support Representative will contact you within 15 minutes to resolve the problem.
For critical production issues, use the number listed below.

TABLE 2 Typographical Conventions

Convention Meaning

 .
 .
 .

Vertical ellipsis points in an example mean that information not directly
related to the example has been omitted.

. . . Horizontal ellipsis points in statements or commands mean that parts of
the statement or command not directly related to the example have been
omitted.

< > Angle brackets are used in the following situations:

• user-supplied values (variables)
• XML elements

[] Brackets enclose optional clauses from which you can choose one or
more option.

bold text Bold text indicates emphasis.

Italicized text Italic type in text indicates a term defined in the text, the glossary, or in
both locations.

blue text Blue text indicates a hypertext link.

Contact 1-866-622-2390

Hours Available 24/7 (seven days a week, 24 hours a day)

Technical Support Contact Information

Phone For critical production issues only: 1-888-829-1907
© 2022 FIS and/or its affiliates. All rights reserved.

 eProtect Integration Guide V4.19

About This Guide

Relationship Management/Customer Service - For non-technical eCommerce issues, including
questions concerning the user interface, help with passwords, modifying merchant details, and changes
to user account permissions, contact the Customer Experience Management/Customer Service
Department.

Chargebacks - For business-related eCommerce issues and questions regarding financial transactions
and documentation associated with chargeback cases, contact the Chargebacks Department.

Technical Publications - For questions or comments about this document, please address your
feedback to the Technical Publications Department. All comments are welcome.

E-mail eCommerceSupport@fisglobal.com

Hours Available 24/7 (seven days a week, 24 hours a day)

Relationship Management/Customer Service Contact Information

Telephone 1-844-843-6111 (Option 3)

E-mail eComCustomerCare@worldpay.com

Hours Available Monday – Friday, 8:00 A.M.– 6:00 P.M. EST

Chargebacks Department Contact Information

Telephone 1-844-843-6111 (option 4)

E-mail chargebacks@fisglobal.com

Hours Available Monday – Friday, 7:30 A.M.– 5:00 P.M. EST

Technical Publications Contact Information

E-mail TechPubs@fisglobal.com

Technical Support Contact Information
© 2022 FIS and/or its affiliates. All rights reserved.

 eProtect Integration Guide V4.19
xi

About This Guide

xi

© 2022 FIS and/or its affiliates. All rights reserved.

 eProtect Integration Guide V4.19

© 2022 FIS and/or its affiliates. All rights reserved.

 eProtect Integration Guide V4.19
1

Introduction

This chapter provides an introduction and an overview of eProtect. The topics discussed in this chapter
are:

• eProtect Overview
• How eProtect Works

• Getting Started with eProtect
• Migrating From Previous Versions of the eProtect API

• eProtect Support for Apple Pay™ / Apple Pay on the Web

• eProtect Support for Google Pay™
• eProtect Support for Visa Checkout™

• Setting Timeout Values

• Creating a Customized CSS for iFrame
• iFrame Accessibility
1

Introduction

2

 1.1 eProtect Overview

Worldpay's eProtect and OmniToken solutions help solve your card-not-present challenges by virtually
eliminating payment data from your systems. The eProtect solution reduces the threat of account data
compromise by transferring the risk to Worldpay, reducing PCI applicable controls. No card data is
actually transmitted via your web server.

When the card holder submits their account information, your checkout page calls the eProtect service to
exchange the account number for a low-value token (the Registration ID). The Registration ID--a PCI
non-sensitive value--is exchanged for a high value Worldpay token in a transaction (authorization,
sale, or registerToken). The API call for the token exchange is completed within Worldpay
processing environments and is not transmitted to the card networks. Therefore, CVV and AVS
information is not checked, and the expiration date is not validated. Any credit card that passes MOD10
receives a Registration ID. The Worldpay token server stores only the card number, and does not include
CVV, expiration date, or any other cardholder information.

Worldpay ensures high service availability for eProtect by internally implementing primary and secondary
endpoint routing (i.e., internal routing to a secondary site if the primary site is unavailable). High
availability is supported when using the eProtect JavaScript API V.3.or higher.

Worldpay provides three integration options for eProtect:

• iFrame API - this solution builds on the same architecture of risk- and PCI scope-reducing
technologies of eProtect by fully hosting fields with PCI-sensitive values. Payment card fields, such as
primary account number (PAN), expiration date, and CVV2 values are hosted from our
PCI-Compliance environment, rather than embedded as code into your checkout page within your
environment.

• JavaScript Customer Browser API - controls the fields on your checkout page that hold sensitive
card data. When the cardholder submits his/her account information, your checkout page calls the
eProtect JavaScript to register the provided credit card for a token. The JavaScript validates,
encrypts, and passes the account number to our system as the first step in the form submission. The
return message includes the Registration ID in place of the account number. No card data is actually
transmitted via your web server.

• Mobile API - eProtect Mobile Native Application allows you to use the eProtect solution to handle
payments without interacting with the eProtect JavaScript in a browser. With Mobile Native
Application, you POST an account number to our system and receive a Registration ID in response.
You can use it in native mobile applications--where the cross-domain limitations of a browser don't
apply--to replace payment card data from your web servers.

For more information on PCI compliance and the Worldpay eProtect product, see the Vantiv eProtect
iFrame Technical Assessment Paper, prepared by Coalfire IT Audit and Compliance.

Figure 1-1 illustrates eProtect with Omnitoken in the section, How eProtect Works next.

NOTE: The Mobile API POST option does not use internal routing in Worldpay but instead utilizes a
primary and secondary endpoint in our production environment (our pre-live environment only uses
one endpoint). You can mirror our internal logic by connecting to the primary for five (5) seconds and
if a response is not received from the primary endpoint in five (5) seconds, you can configure your
system to connect to our secondary endpoint and allow 15 seconds before timing out.
© 2022 FIS and/or its affiliates. All rights reserved.

 eProtect Integration Guide V4.19

Introduction
NOTE: In order to optimally use the eProtect feature for risk reduction, this feature must be used at
all times, without exception.
© 2022 FIS and/or its affiliates. All rights reserved.

 eProtect Integration Guide V4.19
3

Introduction

4

 1.1.1 Using eProtect with ISO 8583, 610 and HHMI
You can use eProtect for transactions using the ISO 8583, 610, and HHMI message interface
specifications. These transactions are submitted by your payment processing system after your customer
clicks the submit button on your checkout page. Your payment processing system sends the transactions
to Worldpay with the <paypageRegistrationId> returned by eProtect and the Worldpay maps the
Registration ID to the OmniToken and card number.

For further information on transaction examples with Registration ID, see the following documentation:

• ISO 8583 Reference Guide

• 610 Interface Reference Guide
© 2022 FIS and/or its affiliates. All rights reserved.

 eProtect Integration Guide V4.19

https://developerengine.fisglobal.com/assets/pdf/Worldpay_ISO_8583_Reference_Guide_V2.33.pdf
https://developerengine.fisglobal.com/assets/pdf/Worldpay_610_Interface_Reference_Guide_V2.32.pdf

Introduction
 1.2 How eProtect Works

FIGURE 1-1 eProtect Process

1. The cardholder enters their details in the eProtect iFrame, hosted on Worldpay’s dedicated eProtect
server.

2. The eProtect server returns a single-use, low-value token to you. The payment information is
forwarded to Worldpay’s data security platform awaiting an authorization request.

3. You use the low-value token to process the order.
4. Once Worldpay receives authorization, we convert the low-value token to a high-value token –

Worldpay’s OmniToken – and return it to you. This high-value token contains the authorization
response The OmniToken may be used for follow-on transactions, like card-on-file, returns, recurring
billing, etc.
© 2022 FIS and/or its affiliates. All rights reserved.

 eProtect Integration Guide V4.19
5

Introduction

6

 1.3 Getting Started with eProtect

Before you start using the eProtect feature, you must complete the following:

• Ensure that your organization is enabled and certified to process OmniTokens, using the OmniToken
solution.

• Complete and return the eProtect Integration Checklist provided by your Implementation Consultant
and return to Implementation. See Appendix C, "Sample eProtect Integration Checklist".

• Obtain a PayPage ID from your eProtect Implementation Consultant.
• If you are implementing the iFrame solution, create a Cascading Style Sheet (CSS) to customize the

look and feel of the iFrame to match your checkout page, then submit the Style Sheet to Worldpay for
verification. See Creating a Customized CSS for iFrame on page 18 for more information.

• Modify your checkout page or mobile native application--and any other page that receives credit card
data from your customers--to integrate the eProtect feature (execute an API call or POST to our
system). See one of the following sections, depending on your application:
• Integrating Customer Browser JavaScript API Into Your Checkout Page on page 28.
• Integrating iFrame into your Checkout Page on page 42.

• Integrating eProtect Into Your Mobile Application on page 58.
• Modify your system to accept the response codes listed in Table 1-3, eProtect-Specific Response

Codes Received in Browsers or Mobile Devices and Table 1-4, eProtect Response Codes Received
in cnpAPI Responses.

 1.3.1 Migrating From Previous Versions of the eProtect API

 1.3.1.1 From eProtect with jQuery 1.4.2

Previous versions of the eProtect API included jQuery 1.4.2 (browser-based use only). Depending on the
implementation of your checkout page and your use of other versions of jQuery, this may result in
unexpected behavior. This document describes version 2 of the eProtect API, which covers the use your
own version of jQuery, as described within.

If you are migrating, you must:

• Include a script tag to download jQuery before loading the eProtect API.

• Construct a new eProtect API module when calling sendToEprotect.

 1.3.1.2 From JavaScript Browser API to iFrame

When migrating from the JavaScript Customer Browser API eProtect solution to the iFrame solution,
complete the following steps. For a full HTML code example a iFrame eProtect implementation, see the
HTML Example for Version 3 Hosted iFrame-Integrated Checkout Page on page 100.

NOTE: Starting from March 2022, jQuery is no longer a required library. eProtect uses plain
JavaScript instead of jQuery.
© 2022 FIS and/or its affiliates. All rights reserved.

 eProtect Integration Guide V4.19

Introduction
1. Remove the script that was downloading eProtect-api3.js.
2. Add a script tag to download eprotect-iframe-client4.min.js.

3. On your form, remove the inputs for account number, cvv, and expiration date. Put an empty div in
its place.

4. Consolidate the three callbacks (submitAfterEprotect, onErrorAfterEprotect and
onTimeoutAfterEprotect in our examples) into one callback that accepts a single argument. In
our example, this is called eProtectiframeClientCallback.

5. To determine success or failure, inspect response.response in your callback. If successful, the
response is ‘870.’ Check for time-outs by inspecting the response.timeout; if it is defined, a
timeout has occurred.

6. In your callback, add code to retrieve the paypageRegistrationId, bin, expMonth and
expYear. Previously, paypageRegistrationId and bin were placed directly into your form by
our API, and we did not handle expMonth and expYear (we’ve included these inside our form to
make styling and layout simpler).

7. Create a Cascading Style Sheet (CSS) to customize the look and feel of the iFrame to match your
checkout page, then submit the Style Sheet to Worldpay for verification. See Creating a Customized
CSS for iFrame on page 18 and Configuring the iFrame on page 43 for more information.

8. See Calling the iFrame for the Checkout ID on page 48 to retrieve the paypageRegistrationId.

 1.3.2 Browser and Mobile Operating System Compatibility
The eProtect feature is compatible with the following (see Table 1-1, "Apple Pay on the Web Compatible
Devices" for information on Apple Pay web):

Browsers (when JavaScript is enabled):

• Google Chrome 22 and later

• Mozilla Firefox 27 and later
• Microsoft - Internet Explorer 11 and later, Internet Explorer Mobile 11 and later, Edge 12 and later
• Safari 7 and later, Safari Mobile 6 and later

• Opera 14 and later

Native Applications on Mobile Operating Systems:

• Chrome Android 40 and later

• Android 2.3 and later
• Apple iOS 3.2 and later
• Windows Phone 10 and later

• Blackberry 7, 10 and later
• Other mobile OS

IMPORTANT: Because browsers differ in their handling of eProtect transactions, Worldpay
recommends testing eProtect on various devices (including smart phones and tablets) and all
browsers, including Internet Explorer/Edge, Google Chrome, Apple Safari, and Mozilla Firefox.
© 2022 FIS and/or its affiliates. All rights reserved.

 eProtect Integration Guide V4.19
7

Introduction

8

 1.3.2.1 Communication Protocol Requirement

If you are using an MPLS network, Worldpay requires that you use TLS 1.2 encryption.

 1.3.3 eProtect Support for Apple Pay™ / Apple Pay on the Web
Worldpay supports Apple Pay for in-app and in-store purchases initiated on compatible versions of
iPhone and iPad, as well as purchases from your desktop or mobile website initiated from compatible
versions of iPhone, iPad, Apple Watch, MacBook and iMac (Apple Pay on the Web).

If you wish to allow Apple Pay transactions from your native iOS mobile applications, you must build the
capability to make secure purchases using Apple Pay into your mobile application. The operation of Apple
Pay on the iPhone and iPad is relatively simple: either the development of a new native iOS application or
modification of your existing application that includes the use of the Apple PassKit Framework, and the
handling of the encrypted data returned to your application by Apple Pay. See Using the Worldpay Mobile
API for Apple Pay on page 61 for more information.

For Apple Pay on the Web, integration requires that the <applepay> field be included in the
sendToEprotect call when constructing your checkout page with the JavaScript Customer Browser
API. See Integrating Customer Browser JavaScript API Into Your Checkout Page on page 28 and Using
the Customer Browser JavaScript API for Apple Pay on the Web on page 37 for more information on the
complete process. Also, see Table 1-1, Apple Pay on the Web Compatible Devices for further information
on supported Apple devices.

NOTE: Table 1-1 represents data available at the time of publication, and is subject to change. See
the latest Apple documentation for current information.

TABLE 1-1 Apple Pay on the Web Compatible Devices

Apple Device Operating System Browser

iPhone 6 and later
iPhone SE

iOS 10 and later

 Safari only

iPad Pro
iPad Air 2 and later
iPad Mini 3 and later

iOS 10 and later

Apple Watch
Paired with iPhone 6 and later

Watch OS 3 and later

iMac
Paired with any of the above mobile devices
with ID Touch for authentication

macOS Sierra and later

MacBook
Paired with any of the above mobile devices
with ID Touch for authentication

macOS Sierra and later
© 2022 FIS and/or its affiliates. All rights reserved.

 eProtect Integration Guide V4.19

Introduction
 1.3.4 eProtect Support for Google Pay™
Google Pay is an on-line payment method that lets your customers use the cards they've saved to their
Google Account to pay quickly and easily in your apps. and on your websites. By clicking the Google Pay
button, customers can choose a payment method saved in their Google Account and finish checkout in a
few, simple steps.

You can use the Google Pay API to simplify payments for customers who make purchases in Android
apps or on Chrome with a mobile device.

Worldpay supports two methods for merchants to submit Google Pay transactions from Mobile
applications to the FIS-Worldpay platform. The preferred method involves you sending certain
Worldpay-specific parameters to Google. The response from Google includes a Worldpay
paypageRegistrationId, which you use normally in your payment transaction submission to
Worldpay. With the alternate method, you receive encrypted information from Google, decrypt it on your
servers, and submit the information to Worldpay in a payment transaction. See Using the Worldpay
Mobile API for Google Pay on page 68 for more information.

 1.3.5 eProtect Support for Visa Checkout™
Visa Checkout™ is a digital payment service in which consumers can store card information for Visa,
Mastercard, Discover, and American Express cards. Visa Checkout provides quick integration for
merchants that want to accept payments from these card holders. Visa Checkout is flexible and imposes
only a few requirements for its use, leveraging your existing environments--web site and mobile
applications--where you add Visa Checkout buttons to existing pages and implement business and event
logic using programming languages, tools, and techniques in the same way you currently do. Worldpay
supports Visa Checkout purchases from your website or mobile app. initiated from compatible devices.

 1.3.5.1 Getting Started with Visa Checkout

The simplest approach to integrating Visa Checkout takes three steps and can be done entirely from your
web page (with the exception of decrypting the consumer information payload on a secure server).
Figure 1-2 illustrates the main steps for getting started with Visa Checkout.

NOTE: Parts of this section are excerpts from Visa Checkout documentation and represents data
available at the time of publication of this document, and is therefore subject to change. See the
latest Visa documentation (https://developer.visa.com/products/visa_checkout/reference) for current
information.
© 2022 FIS and/or its affiliates. All rights reserved.

 eProtect Integration Guide V4.19
9

https://developer.visa.com/products/visa_checkout/reference
https://developer.visa.com/products/visa_checkout/reference
https://developer.visa.com/products/visa_checkout/reference

Introduction

10
FIGURE 1-2 Getting Started with Visa Checkout

1. Place a Visa Checkout button on your web page and include the necessary JavaScript to handle
events associated with the button.

2. Handle the payment event returned by Visa Checkout by decrypting the consumer information
payload.

3. Update Visa Checkout with the final payment information after the payment has been processed.

All integration options require that you perform step 1. Sections in this document describes the method
using Worldpay eProtect.

 1.3.5.2 Requirements for Using Visa Checkout

This section describes the various requirements for using Visa Checkout.

• Usage and Placement of Visa Checkout Buttons: You are required to implement the Visa
Checkout branding requirements on all pages where the consumer is presented payment method
options, such as Visa Checkout or another payment method. Common examples include shopping
cart page, login page, product page, and payment page. Your actual implementation depends on your
specific flow.
You can use Visa Checkout on any web page or in any flow on your site or native mobile application
where a consumer is asked to type in their billing and payment information. Common examples
include cart pages (both full and mini) pages, payment pages, card-on-file management pages, or
immediately before a flow where a consumer is prompted for personal information, which may be
available, at least partially, within Visa Checkout.

See the latest Visa Checkout Integration Guide for more information and to learn how placing Visa
Checkout buttons on the shopping cart page and your login page might work.

• Clickjacking Prevention Steps: To prevent clickjacking of your pages, each page must contain
JavaScript to verify that there are no transparent layers, such as might be the case if your page was
loaded as an iFrame of a page containing malicious code, and that only your site can load your
pages.

See the latest Visa Checkout Integration Guide for more information on preventing clickjacking.
• Obtaining the externalClientId from Worldpay: During the on-boarding process, Worldpay

Implementation assigns an externalClientId to denote the relationship between Worldpay, your
organization and Visa.
© 2022 FIS and/or its affiliates. All rights reserved.

 eProtect Integration Guide V4.19

Introduction
• Updating Visa Checkout with the Payment Information: After you finish making a payment (and
perhaps using the information from the payload), you must update the payment information in Visa
Checkout. To update Visa Checkout from a Thank You page (next page to load after making the
payment), you add a one-pixel image to the page.
For more information about the Update Payment Info pixel image, see the latest Visa Checkout
Integration Guide.

See additional information on Using the Customer Browser JavaScript API for Visa Checkout on page 39
and Using the Worldpay Mobile API for Visa Checkout on page 65.

 1.3.6 jQuery Version
If you are implementing a browser-based solution, you have the option to use a jQuery library or
JavaScript before loading the eProtect API. If using jQuery, we recommend using jQuery 1.4.2 or higher.
Refer to http://jquery.com for more information on jQuery. If using JavaScript, simply leave out the
reference to jQuery in your code.

 1.3.7 Certification and Testing Environments
For certification and testing of Worldpay feature functionality, Worldpay uses the Pre-Live testing
environment. The Pre-live environment is for all merchant certification testing for both new merchants
on-boarding to Worldpay, and existing merchants seeking to incorporate additional features or
functionalities (for example, eProtect) into their current integrations.

Use the URLs listed in Table 1-2 when testing and submitting eProtect transactions. Sample JavaScripts
are available at pre-live and production eProtect URLs. The following sample scripts are available:

• eProtect JavaScript (eProtect-api3.js)
• Version 3 iFrame Client (eprotect-iframe-client3.js)
• Version 4 iFrame Client (eprotect-iframe-client4.js

• iFrame JavaScript (eProtect-iframe.js)

NOTE: iFrame Version 4 adds accessibility features including customizable error messages using
the new customErrorMessages property. If you wish to migrate from iFrame Version 3 to iFrame
Version 4, be aware that adjustments are required to your existing style sheet (see iFrame
Accessibility on page 25), as well as error messages (see Handling Errors - iFrame Version 4 on
page 55).
© 2022 FIS and/or its affiliates. All rights reserved.

 eProtect Integration Guide V4.19
11

http://jquery.com
http://jquery.com
http://jquery.com

Introduction

12
TABLE 1-2 eProtect Certification, Testing, and Production URLs

Environment URL Purpose URL

Pre-Live
(Testing and
Certification)

JavaScript Library https://request.eprotect.vantivprelive.com/eProtect/eProtect-api3.js

Request
Submission
(excluding POST)

https://request.eprotect.vantivprelive.com

iFrame version 3 https://request.eprotect.vantivprelive.com/eProtect/js/eProtect-
iframe-client3.min.js

iFrame version 4 https://request.eprotect.vantivprelive.com/eProtect/js/eProtect-
iframe-client4.min.js

POST Request
Submission (for
Mobile API)

https://request.eprotect.vantivprelive.com/eProtect/paypage

API Request (Visa
Checkout only)

https://request.eprotect.vantivprelive.com/eProtect/s.json

Tokenized EBT
PAN Request
(EBT/SNAP cards
only)

https://www.testvantivcnp.com/checkout/checkout-ebt-noexp.html

Tokenized EBT
PIN Request
(EBT/SNAP cards
only)

https://www.testvantivcnp.com/checkout/checkout-pin.html

Live
Production

Production Contact your Implementation Consultant for the eProtect Production
URL.
© 2022 FIS and/or its affiliates. All rights reserved.

 eProtect Integration Guide V4.19

Introduction
 1.3.7.1 Pre-Live Environment Limitations and Maintenance Schedule

When using the pre-live environment for testing, please keep in mind the following limitations and
maintenance schedules:

• The number of merchants configured per organization is limited to the number necessary to perform
the required certification testing.

• Data retention is limited to a maximum of 30 days.

• Merchant profile and data is deleted after seven (7) consecutive days with no activity.
• Maintenance window (for Core platform) - every other Thursday from 10:00 PM to 6:00 AM ET

• Maintenance window (for all eCommerce pre-live environments) - each Tuesday and Thursday from
4:00 AM to 8:00 AM ET.

• Daily limit of 1,000 Online transactions.
• Daily limit of 10,000 Batch transactions.

 1.3.8 Transitioning from Certification to Production
Before using your checkout form with eProtect in a production environment, replace all instances of the
Testing and Certification URLs listed in Table 1-2 with the production URL. Contact Implementation for
the appropriate production URL. The URLs in Table 1-2 and in the sample scripts throughout this
guide should only be used in the certification and testing environment.

 1.3.9 eProtect-Specific Response Codes
Table 1-3 lists response codes specific to the eProtect feature, received in the browser or mobile device,
and those received via the applicable Worldpay message specification responses. Table 1-4 lists those
received via a cnpAPI Response. For further information on response codes specific to token
transactions, see the publications listed in Documentation Set on page xi.

NOTE: Depending upon overall system capacity and/or system maintenance requirements, data
purges may occur frequently. Whenever possible, we will provide advanced notification.

NOTE: Due to the planned maintenance windows, you should not use this environment for
continuous regression testing.

NOTE: Some user input error messages are customizable when using Version 4 of the iFrame
solution. See Handling Errors - iFrame Version 4 on page 55 for more information.
© 2022 FIS and/or its affiliates. All rights reserved.

 eProtect Integration Guide V4.19
13

Introduction

14
TABLE 1-3 eProtect-Specific Response Codes Received in Browsers or Mobile Devices

Response
Code Description Error Type Error Source

870 Success -- --

871 Account Number not Mod10 Validation User

872 Account Number too short Validation User

873 Account Number too long Validation User

874 Account Number not numeric Validation User

875 Unable to encrypt field System JavaScript

876 Account number invalid Validation User

881 Card Validation number not numeric Validation User

882 Card Validation number too short Validation User

883 Card Validation number too long Validation User

884 eProtect iFrame HTML failed to load System FIS-Worldpay

885 eProtect iFrame CSS failed load - <number> System FIS-Worldpay

889 Failure System FIS-Worldpay

893 PIN num too short Validation User

894 PIN num too long Validation User

NOTE: For information on response codes specific to OmniToken transactions, see the applicable
Worldpay message interface specification.

TABLE 1-4 eProtect Response Codes Received in cnpAPI Responses

Response
Code Response Message

Response
Type Description

826 Checkout ID was invalid Soft Decline An eProtect response indicating that the
Checkout ID submitted was too long, too
short, non-numeric, etc.

827 Checkout ID was not
found

Soft Decline An eProtect response indicating that the
Checkout ID submitted was expired, or valid
but not found.

828 Generic Checkout ID
error

Soft Decline There is an unspecified Checkout ID error;
contact your Relationship Manager.
© 2022 FIS and/or its affiliates. All rights reserved.

 eProtect Integration Guide V4.19

Introduction
 1.3.10 eProtect Registration ID Duplicate Detection
Worldpay performs duplicate detection reviews on all form fields such as the card number, CVV, order ID,
and Transaction ID. In the event that multiple eProtect registrations are submitted within a five-minute
period containing identical form fields, subsequent requests are flagged as duplicates, and processed by
returning the originating callback response and Registration ID value.

With this, false positives may occur if your organization has not implemented a policy that provides a
unique Order ID and Transaction ID for every request. If not implemented, you could potentially receive
an incorrect CVV value, which could be disruptive to chargeback processing. Worldpay strongly
recommends that the order ID and transaction ID data elements be unique for every registration request.

 1.3.11 Setting Timeout Values
You configure timeout values in eProtect and iFrame configurations to assist in determining whether your
checkout page was built successfully. If timeout values are set too low, the iFrame may fail to load. If
timeout values are set too high, the secondary server may not have time to load.

Table 1-5 gives timeout value recommendation for the three request types. See Configuring the iFrame
on page 43 for more information.

877 Invalid PayPage
Registration ID

Hard
Decline

An eProtect response indicating that the
Registration ID submitted is invalid.

878 Expired PayPage
Registration ID

Hard
Decline

An eProtect response indicating that the
Registration ID has expired (Registration IDs
expire 24 hours after being issued).

879 Merchant is not
authorized for PayPage

Hard
Decline

A response indicating that your organization
is not enabled for the eProtect feature.

TABLE 1-4 eProtect Response Codes Received in cnpAPI Responses (Continued)

Response
Code Response Message

Response
Type Description
© 2022 FIS and/or its affiliates. All rights reserved.

 eProtect Integration Guide V4.19
15

Introduction

16
* This value represents the observed timeout in 0.1% of requests (99.9th percentile). Table 1-6 lists the
range of observed response times based on a sampling of JavaScript and HTML file retrievals

TABLE 1-5 Timeout Value Recommendations

Request Type and URL

99.9th
Percentile
Response
Time * Property and Definition Recommendations

Client JavaScript that loads
iFrame:
https://request.eprotect.van
tivcnp.com/eProtect/js/payfr
ame-client.min.js

900ms
(0.9 seconds)

-- Worldpay recommends that
you do not use any
internal timeout logic before
loading the iFrame client
JavaScript. Some slow
devices (i.e., mobile
phones, slow Internet
connections) could take as
long as 15 seconds to load
the JavaScript. If your
configuration does not
allow the JavaScript to
load, the iFrame will not
render for customer
payment input.

iFrame with PAN, expDate, or
CVV:
https://request.eprotect.van
tivcnp.com/eProtect/eProtect
_mypaypageIdnumber.html

900ms

(0.9 seconds)

htmlTimeout (Optional)

The amount of time (in
milliseconds) to wait for
the iFrame to load before
responding with an ‘884’
error code. If you receive
an 884 code, the
payment cannot proceed.

Use the default timeout
value of 5000 (5 seconds).
If you receive frequent ‘884’
errors due to the iFrame
failing to load, increase the
htmlTimeout value.

Tokenization API call:
https://request.eprotect.van
tivcnp.com/eProtect/paypage

6000ms
(6 seconds)

timeout (Required)
The number of
milliseconds before a
transaction times out and
the timeout callback in
invoked. If the response
from the primary server
takes more than five (5)
seconds, the request is
automatically sent to our
secondary server.

Set a timeout value of
15000 (15 seconds) to
ensure the secondary
server has time to respond.
© 2022 FIS and/or its affiliates. All rights reserved.

 eProtect Integration Guide V4.19

Introduction
(approximately 10,000,000 requests) and API calls (approximately 40,000,000 requests) over a 30-day
period.

TABLE 1-6 Observed Response Times - 30 Day Sample

Description Median
10% of Requests
(90th percentile)

1% of Requests
(99th percentile)

0.1% of Requests
(99.9th percentile)

Client JavaScript that loads
iFrame

80ms 300ms 700ms 900ms

iFrame with PAN/expDate/CVV 5ms 80ms 400ms 900ms

Tokenization API call 400ms 1060ms 2000ms 6000ms
© 2022 FIS and/or its affiliates. All rights reserved.

 eProtect Integration Guide V4.19
17

Introduction

18
 1.4 Creating a Customized CSS for iFrame

Before you begin using the iFrame solution, you must create a Cascading Style Sheet (CSS) to customize
the look and feel of the iFrame to match your checkout page. After creating and customizing your style
sheet, you then submit the style sheet to Worldpay, where it will be tested before it is deployed into
production. This section describes the various tools and customizations available for creating your CSS
for iFrame and submitting your CSS for review:

• CSS iFrame Validation and Customization Features

• Using Web Developer Tools
• Reviewing your CSS with Worldpay

For a list of allowable and disallowed CSS Properties, see .Appendix B, "CSS Properties for iFrame API".

 1.4.1 CSS iFrame Validation and Customization Features
Worldpay offers a set of iFrame validation and customization features to reduce cart abandonment,
increase conversions, and help simplify the payment experience for your customers. See Configuring the
iFrame on page 43 for further information on placement of these properties in your checkout page.

These features include:

Real-Time In-line Field Validations - while traditional web forms use submit-and-refresh rules that
respond once you click the Submit button, real-time in-line validations can help your customers fill out
web forms faster and with fewer errors. By guiding them with real-time feedback that instantly confirms
whether the values they input are valid, transactions can be more successful and less error-prone, and
customers are more satisfied with their checkout experience.

Payment Form Behaviors - customizable behaviors include:

• Empty Input - if your customer clicks back after leaving a payment form (for example, if they want to
edit their payment information or in the case of a timeout, etc.), eProtect detects whether your
customer has attempted to enter new form data.

If they have not entered any new values, you can use the original token for the transaction. If your
customer attempts to enter new values, eProtect clears the form—instead of leaving the previous
entries in place—eliminating the need to erase the old values before re-entering new values.

• Disallowed Characters - allows only numeric values to be entered for the Account Number and CVC
fields (no alpha or special characters are permitted).
For mobile users, this is automatically facilitated by the presentation of a telephone pad when
entering these fields, rather than the standard alphanumeric board.

• Auto-Formatting of account numbers based on the type of card.

Client Driven Behaviors - additional capabilities include:

• Tooltips - you can add a tool tip for any field (not just security code) activated by hovering, or when
clicking 'What's This?’

NOTE: If you are evaluating your styling options and/or having trouble creating your own style
sheet, Worldpay can provide sample CSS files. Please contact your assigned Implementation
Consultant for sample CSS files.
© 2022 FIS and/or its affiliates. All rights reserved.

 eProtect Integration Guide V4.19

Introduction
• Font Support - Worldpay supports a hosted font library for standard web fonts. You specify the
‘font-family’ property in your CSS. Worldpay does not support custom fonts.

• Icons - Worldpay hosts an industry-standard icon library, SVG Icons (Font Awesome, v4.7.0) on our
servers for you to leverage in your CSS. eProtect uses Font Awesome in iFrame primarily for
payment card brand icons.

• Trust Badge - you can add a ‘trust’ badge (e.g., a padlock or shield icon) on the payment form to
reassure your customers that your site is legitimate and that all their personal data is collected
securely through trusted third-party service providers. Note that the trust badge can be displayed in
place of the card graphic; your page cannot display both.

Table 1-7, "iFrame Checkout Page Customizations - In-Line Field Validations" and Table 1-8, "Style
Sheet and iFrame Customizations" show samples of these CSS iFrame customizations and describes the
implementation of each.

When you set the optional enhancedUxFeatures.inlineFieldValidations property to true
when configuring your iFrame, the behaviors listed in Table 1-7 are all included.

NOTE: You must use Font Awesome v5.5.13 when using the Visa logo on your iFrame
checkout page. To upgrade to V5.5.13, pass the configuration property enhancedUXVersion
(an option of enhancedUxFeatures) with a value of 2 to obtain version 5.15.3. Any other
value passed or lack of parameter results in continued use of version 4.7.0. See Configuring
the iFrame on page 43 for more information.

NOTE: Worldpay does not offer the option to mask inputted values, as the inputs are hosted in the
PCI-compliant iFrame environment. Masking the inputs does not add any additional security value.
© 2022 FIS and/or its affiliates. All rights reserved.

 eProtect Integration Guide V4.19
19

Introduction

20

The items listed in Table 1-8 are also available as optional features controlled by the your style sheet and
via iFrame function. By default, the Tool Tip features are active, but can be suppressed with the CSS.

TABLE 1-7 iFrame Checkout Page Customizations - In-Line Field Validations

Field Validation Behavior Samples

Card
Number

The iFrame checks the card number for correct
size (too short or too long) and against the
Luhn/Mod10 algorithm.
In this example, if the consumer’s inputs are
valid, you can configure the iFrame to display
green field borders and include a green check
mark. Red borders and a red ‘X’ can indicate
invalid input.

The frame colors are customizable in your style
sheet. The error messages are also
customizable either via your style sheet or
through JavaScript, depending on the version of
the eProtect iFrame solution you are using. See
Handling Errors - iFrame Version 4 on page 55
for more information.

The iFrame identifies the card type (Visa,
Mastercard, Amex, etc.) based on the first few
digits entered, and displays the appropriate card
graphic. If the card type is unknown, the iFrame
displays a generic card graphic.
You can configure your style sheet to hide the
card graphic.

In addition, the iFrame auto-formats the
arrangement of the card digits based on the
initial entry.

Expiration
Date

The iFrame checks the expiration month to
determine if the selected month is prior to the
current month.

Security
Code

The iFrame confirms the logic against the
account number type. For example, if the card is
an American Express card and the consumer
enters only three digits (should be four digits), an
error is indicated.
© 2022 FIS and/or its affiliates. All rights reserved.

 eProtect Integration Guide V4.19

Introduction
TABLE 1-8 Style Sheet and iFrame Customizations

Customization Samples

Trust Badge - You can add a ‘trust badge’ (e.g., a
padlock or shield icon) to the payment form, using
the Font Awesome (V4.7.0) icon library. Note that the
trust badge can be displayed in place of the card
graphic; your page cannot display both.

Tool Tips - you control the following tool tip behavior in your style sheet:

You can add a tool tip for any field (not just security
code) activated by hovering, or when clicking 'What's
This?’

Tool tip displayed after clicking ‘What’s This?’

You can configure your style sheet to activate a tool
tip by hovering over the ‘?’ icon (rather than clicking).
This is useful for short statements.
You can also configure a modal dialog to activate on
the click of the second ‘?’ icon to display more
lengthy CSS content.

Modal dialog displayed upon clicking second ‘?’ icon.
© 2022 FIS and/or its affiliates. All rights reserved.

 eProtect Integration Guide V4.19
21

Introduction

22
Tool Tips (continued)
You can configure your CSS to display a Security
code modal dialog where the tool tip displays generic
card art showing the placement of CVC on cards.
You can hide this with the CSS, if you choose.

You can also remove the scrollbars, as well as direct
your CSS to auto-size the dialog based on content.

Modal dialog displayed upon clicking first or second ‘?’
icon at the security code field.

TABLE 1-8 Style Sheet and iFrame Customizations (Continued)

Customization Samples
© 2022 FIS and/or its affiliates. All rights reserved.

 eProtect Integration Guide V4.19

Introduction
 1.4.2 Using Web Developer Tools
By using standard browser-provided web developer tools, you can develop and customize your CSS prior
to sending it to Worldpay for boarding.

To access the developer tool and to customize your CSS:

1. Go to https://www.testvantivcnp.com/iframe/ to access the demo URL and review the provided style
sheet.
If you are using the enhanced iFrame features described in the previous section, CSS iFrame
Validation and Customization Features, use the following URL:

https://www.testvantivcnp.com/checkout/checkout-iframe-enhanced-demo.jsp
2. Right click the Account Number text field, then click Inspect or Inspect Element (depending on

your browser). The browser splits the window into two or more browser-specific developer frames.
3. Locate the highlighted HTML section in the developer tool frame of the browser where it shows

<input type="tel" id="accountNumber"...
4. Scroll up a few lines, and locate the HTML section, <head>…</head>. Expand the section with the

arrow icon (if it is not already expanded).
5. Locate the HTML section <style>…</style>, which is the last child of the <head/> element, and

expand it.
6. Double click the content, delete it, then paste in your new style sheet. To make the new CSS style

effective, simply click somewhere else to exit the editing mode.

7. Copy and paste the CSS file and send it to your Worldpay Implementation Consultant for review.

 1.4.3 Reviewing your CSS with Worldpay
Worldpay reviews your CSS by an automatic process which has white-listed allowed CSS properties and
black-listed, ‘dangerous’ CSS values (such as URL, JavaScript, expression). Properties identified as such
have been removed from the white list, and if used, will fail verification of the CSS. See Table B-24, "CSS
Properties Excluded From the White List (not allowed)" for those properties not allowed.

If an error is detected, Worldpay returns the CSS for correction. If the CSS review is successful, the CSS
is uploaded to the your eProtect configuration.

Note the following:

• If additional properties and/or values are introduced in future CSS versions, those properties and
values will be automatically black-listed until Worldpay can review and supplement the white-listed
properties and values.

• Certain properties allow unacceptable values, including URL, JavaScript, or expression. This includes
the content property, which allows you to enter ‘Exp Date’ instead of our provided ‘Expiration Date’
label. If the property contains a URL, JavaScript, expression, or attr(href), Worldpay will fail
verification of the CSS.

• Any property in the white list also allows its browser’s extended values, where applicable.

See https://www.testvantivcnp.com/iframe/ to view a simple iFrame example.

To view an iFrame example checkout page using the enhanced features described in CSS iFrame
Validation and Customization Features on page 18, use the following URL:

https://www.testvantivcnp.com/checkout/checkout-iframe-enhanced-demo.jsp
© 2022 FIS and/or its affiliates. All rights reserved.

 eProtect Integration Guide V4.19
23

https://www.testvantivcnp.com/iframe
https://www.testlitle.com/checkout/checkout-iframe-enhanced-demo.jsp
https://www.testvantivcpn.com/iframe/
https://www.testlitle.com/checkout/checkout-iframe-enhanced-demo.jsp

Introduction

24
 1.4.3.1 CSS Properties Not Listed

There may be properties not listed in Appendix B, "CSS Properties for iFrame API" that you wish to use
when creating your style sheet. We do not list every non-allowed CSS property, just those that we
explicitly black-list (or that are ‘excluded from the white-list’). There may be an opportunity to evaluate
new CSS properties to add to the white-list. Please contact your Implementation Consultant to initiate a
request for future development consideration of CSS properties.
© 2022 FIS and/or its affiliates. All rights reserved.

 eProtect Integration Guide V4.19

Introduction
 1.5 iFrame Accessibility

eProtect iFrame Version 4 includes features that improve accessibility for HTML and error messages
including:

• Expiration date fields grouped and labeled in a way that is more understandable to screen-reading
programs.

• A mechanism for alerting customers to errors caused by invalid input (such as a card number that is
too short).

eProtect iFrame Version 3 is still available but does not contain these accessibility upgrades. In Version 3,
a CSS class is added to the input field containing the error, and this class can be used to style the field or
to display an error message into the iFrame using the CSS ::before and ::after pseudo-elements.
Screen readers cannot convey styling information and cannot detect content inserted using these CSS
pseudo-elements.

eProtect Frame Version 4 inserts customizable error messages into the document structure using
JavaScript. These error messages are detected and read by screen readers.

For more information, see Handling Errors - iFrame Version 3 on page 55 and Handling Errors - iFrame
Version 4 on page 55.

TABLE 1-9 eProtect iFrame Versions

iFrame
Version Client File Name

Accessible
HTML

Accessible Error
Message

4 eProtect-iframe-client4.min.js Yes Yes

3 eProtect-iframe-client3.min.js No No
© 2022 FIS and/or its affiliates. All rights reserved.

 eProtect Integration Guide V4.19
25

Introduction

26

© 2022 FIS and/or its affiliates. All rights reserved.

 eProtect Integration Guide V4.19

© 2022 FIS and/or its affiliates. All rights reserved.

 eProtect Integration Guide V4.19
2

Integration and Testing

This chapter describes the steps required to integrate the eProtect feature as part of your checkout page,
transaction examples, and information on eProtect testing and certification. The sections included are:

• Integrating Customer Browser JavaScript API Into Your Checkout Page
• Integrating iFrame into your Checkout Page

• Integrating eProtect Into Your Mobile Application
• Collecting Diagnostic Information
• Transaction Examples When Using cnpAPI

• Testing and Certification
27

Integration and Testing

28
 2.1 Integrating Customer Browser JavaScript API Into Your
Checkout Page

This section provides step-by-step instructions for integrating the Customer Browser JavaScript API
eProtect solution into your checkout page. This section also provides information on the following
payment methods:

• Using the Customer Browser JavaScript API for Apple Pay on the Web
• Using the Customer Browser JavaScript API for Visa Checkout

See Integrating eProtect Into Your Mobile Application on page 58 for more information on the mobile
solution.

See Integrating iFrame into your Checkout Page on page 42 for more information on the iFrame solution.

 2.1.1 Integration Steps
Integrating eProtect into your checkout page includes these steps, described in detail in the sections to
follow:

1. Loading the eProtect API and jQuery
2. Specifying the eProtect API Request Fields

3. Specifying the eProtect API Response Fields
4. Handling the Mouse Click
5. Intercepting the Checkout Form Submission

6. Handling Callbacks for Success, Failure, and Timeout
7. Detecting the Availability of the eProtect API

The above steps make up the components of the sendToEprotect call:

• eProtectRequest - captures the form fields that contain the request parameters (paypageId , url,
etc.)

• eProtectFormFields - captures the form fields used to set various portions of the eProtect
registration response (Registration Id, Checkout Id, response reason code, response reason
message, etc.).

• successCallback - specifies the method used to handle a successful eProtect registration.

• errorCallback - specifies the method used to handle a failure event (if error code is received).
• timeoutCallback - specifies the method used to handle a timeout event (if the sendToEprotect

exceeds the timeout threshold).
• timeout - specifies the number of milliseconds before the timeoutCallback is invoked.

JavaScript code examples are included with each step. For a full HTML code example of the eProtect
implementation, see the HTML Checkout Page Examples on page 96.
© 2022 FIS and/or its affiliates. All rights reserved.

 eProtect Integration Guide V4.19

Integration and Testing
 2.1.2 Loading the eProtect API and jQuery

You have the option to have your checkout page load a version of the jQuery JavaScript library before
loading the eProtect client JavaScript library. To load the eProtect client JavaScript library from the
eProtect application server to your customer's browser, insert the JavaScript below into your checkout
page.

This example uses a Google-hosted version of the jQuery JavaScript library. You may choose to host the
library locally. We recommend using version 1.4.2 or higher.

<head>
...
<script
 src="https://ajax.googleapis.com/ajax/libs/jquery/1.4.2/jquery.min.js"

type="text/javascript">
</script>

<script
 src="https://request.eprotect.vantivprelive.com/eProtect/eProtect-api3.js"

type="text/javascript">
</script>

...
</head>

NOTE: Starting from March 2022, jQuery is no longer a required library. eProtect uses plain
JavaScript instead of jQuery.

NOTE: To avoid disruption to transaction processing, Worldpay recommends you download the
latest JavaScript client to your checkout page a minimum of once per day (due to frequent changes
to the JavaScript client). Worldpay does not recommend caching the eProtect JavaScript client on
your servers.

NOTE: The URL in this example script (in red) should only be used in the certification and testing
environment. Before using your checkout page with eProtect in a production environment, replace
the certification URL with the production URL (contact your Implementation Consultant for the
appropriate production URL).

Do not use this URL in a
production environment.
Contact Implementation for the
appropriate production URL.
© 2022 FIS and/or its affiliates. All rights reserved.

 eProtect Integration Guide V4.19
29

Integration and Testing

30
 2.1.3 Specifying the eProtect API Request Fields
To specify the eProtect API request fields, add hidden request fields to your checkout form for
paypageId (a unique number assigned by eProtect Implementation), merchantTxnId, orderId, and
reportGroup (cnpAPI elements). Optionally, you can include the checkoutId when
CheckoutIdMode is set to true. You have control over the naming of these fields.

The values for paypageId and reportGroup will likely be constant in the HTML. The value for the
orderId passed to the eProtect API can be generated dynamically.

<form
<input type="text" id="ccNum" size="20">
<input type="text" id="cvv2Num" size="4">
<input type="text" id="paypageRegistrationId" name="paypageRegistrationId" readonly="true"

hidden>
<input type="text" id="checkoutId" name="checkoutId" readonly="true" hidden>
<input type="text" id="bin" name="bin" readonly="true" hidden>
<input type="hidden" id="request$paypageId" name="request$paypageId" value="a2y4o6m8k0"/>
<input type="hidden" id="request$merchantTxnId" name="request$merchantTxnId"

value="987012"/>
<input type="hidden" id="request$orderId" name="request$orderId" value="order_123"/>
<input type="hidden" id="request$reportGroup" name="request$reportGroup"

value="*merchant1500"/>
...

</form>

NOTE: The orderId field must be a text string with a maximum of 25 characters. The values for
either the merchantTxnId or the orderId must be unique so that we can use these identifiers for
reconciliation or troubleshooting.

The reportGroup field is required however it is not used for eProtect integrations on the Core
platform. Use any value from 1-25 characters.

TABLE 2-1 eProtectFormFields Definitions

Field Description

ccNum (Optional) The credit card account number. Not applicable when
checkoutIdMode is set to true.

cvv2Num (Optional) The card validation number, either the CVV2 (Visa), CVC2
(Mastercard), or CID (American Express and Discover) value.

paypageRegistrationId (Required) The temporary identifier used to facilitate the mapping of a
token to a card number. Not applicable when checkoutIdMode is set
to true.

checkoutId (Optional) The low-value token ID exchanged for the CVV value, when
checkoutIdMode is set to true. (Checkout Id Mode can be used
when you store the high-value token (Registration Id) on file for a
consumer, but still want that consumer to populate the CVV with each
eProtect transaction.)
© 2022 FIS and/or its affiliates. All rights reserved.

 eProtect Integration Guide V4.19

Integration and Testing
 2.1.4 Specifying the eProtect API Response Fields
To specify the eProtect API Response fields, add hidden response fields on your checkout form for
storing information returned by eProtect: paypageRegistrationId, bin, code, message,
responseTime, type, vantivTxnId, firstSix, lastFour, and accountRangeId. You have
flexibility in the naming of these fields.

<form
...
<input type="hidden" id="response$paypageRegistrationId"

name="response$paypageRegistrationId" readOnly="true" value=""/>
<input type="hidden" id="response$checkoutId" name="response$checkoutId" readOnly="true"

value=""/>
<input type="hidden" id="response$bin" name="response$bin" readOnly="true"/>
<input type="hidden" id="response$code" name="response$code" readOnly="true"/>
<input type="hidden" id="response$message" name="response$message" readOnly="true"/>
<input type="hidden" id="response$responseTime" name="response$responseTime"

readOnly="true"/>
<input type="hidden" id="response$type" name="response$type" readOnly="true"/>
<input type="hidden" id="response$vantivTxnId" name="response$vantivTxnId"

readOnly="true"/>
<input type="hidden" id="response$firstSix" name="response$firstSix" readOnly="true"/>
<input type="hidden" id="response$lastFour" name="response$lastFour" readOnly="true"/>
<input type="hidden" id="response$accountRangeId" name="response$accountRangeId"

readOnly="true"/>
...

</form>

 2.1.5 Handling the Mouse Click
In order to call the eProtect JavaScript API on the checkout form when your customer clicks the submit
button, you have the option to add a jQuery selector to handle the submission click JavaScript event.
The addition of the click event creates a eProtect Request and calls sendToEprotect.

The sendToEprotect call includes a timeout value in milliseconds. If the response from the primary
server takes more than five (5) seconds, the request is automatically sent to our secondary server. To

bin (Optional) The bank identification number (BIN), which is the first six
digits of the credit card number. Not applicable when
checkoutIdMode is set to true.

pin (Optional) The PIN to be tokenized, when checkoutPinMode is set
to true. For use with EBT/SNAP cards only.

pinCheckoutId (Optional) The low-value token ID exchanged for the PIN value, when
checkoutPinMode is set to true. For use with EBT/SNAP cards only.

NOTE: The accountRangeId is only seen by merchants enabled for Issuer Insights, a Worldpay
eCommerce Value-added Service.

TABLE 2-1 eProtectFormFields Definitions (Continued)

Field Description
© 2022 FIS and/or its affiliates. All rights reserved.

 eProtect Integration Guide V4.19
31

Integration and Testing

32
ensure the secondary server has time to respond, we recommend a timeout value of 15000 (15 seconds).
See Setting Timeout Values on page 15 for additional information.

<head>
...
<script>
...

$("#submitId").click(
function(){

 setEprotectResponseFields({"response":"", "message":""});

var applepay = {};
applepay.data = “”,
applepay.signature = “”;
applepay.version = “”;
applepay.header = {};
applepay.header.applicationData = “”;
applepay.header.ephemeralPublicKey = “”;
applepay.header.publicKeyHash = “”;
applepay.header.transactionId = “”;

var eProtectRequest = {
 "paypageId" : document.getElementById("request$paypageId").value,
 "reportGroup" : document.getElementById("request$reportGroup").value,
 "orderId" : document.getElementById("request$orderId").value,
 "id" : document.getElementById("request$merchantTxnId").value,
 "checkoutIdMode": true
 "applepay" : applepay
 "url" : "https://request.eprotect.vantivprelive.com"
 "minPanLength" : 16

};
new eProtect().sendToEprotect(eProtectRequest, formFields, submitAfterEprotect,

onErrorAfterEprotect, timeoutOnEprotect, 15000);
return false;

...
</script>

...
</head>

NOTE: The URL in this example script (in red) should only be used in the certification and testing
environment. Before using your checkout page with eProtect in a production environment, replace
the certification URL with the production URL (contact your Implementation Consultant for the
appropriate production URL).

Do not use this URL
in a production
environment. Contact
Implementation for
the appropriate
production URL.
© 2022 FIS and/or its affiliates. All rights reserved.

 eProtect Integration Guide V4.19

Integration and Testing

TABLE 2-2 eProtectRequest Fields

Field Description

paypageId (Required) The unique number assigned by Implementation.

reportGroup (Required, but not used by eProtect integrations on the Core platform.) The
cnpAPI attribute that defines under which merchant sub-group this
transaction will be displayed in eCommerce iQ Reporting and Analytics.

orderId The merchant-assigned unique value representing the order in your system
(used when linking authorizations, captures, and refunds, and for retries).
Worldpay recommends that the values for id and orderId be different and
unique so that we can use these identifiers for reconciliation or
troubleshooting. If you do not have the order number available at this time,
please generate another unique number to send as the orderId (and send
it to your servers to map it to the order number that you generate later).

id The merchant-assigned unique value representing this transaction in your
system. The same value must be used for retries of the same failed
eProtect transaction but must be unique between the eProtect transaction,
authorization, capture, and refund for the same order.

Worldpay recommends that the values for id and orderId must be
different and unique so that we can use these identifiers for reconciliation or
troubleshooting.

checkoutIdMode (Optional) Determines whether checkoutId mode is activated. Setting the
value to true causes only the cvv2 form field to be exchanged with eProtect,
and returns a checkoutId upon a successful callback (instead of the
paypageRegistrationId).

checkoutPinMode (Optional) Determines whether checkoutPinMode is activated. Setting the
value to true causes only the PIN form field to be exchanged with eProtect,
and returns a pinCheckoutId upon a successful callback (instead of the
paypageRegistrationId). Do not use with checkoutIdMode. For use
with EBT/SNAP cards only.

applepay (Optional) The Apple Pay PKPaymentToken. Required for Apple Pay on the
Web. Table 2-8 on page 63 describes the Apple Pay components.

url (Required) The URL to request submission for eProtect. See Table 1-2,
eProtect Certification, Testing, and Production URLs on page 12.

minPanLength (Optional) Minimum number of digits that must be present in the
customer-supplied PAN value. Defaults to 13 if this value is not provided.

maxPanLength (Optional) Maximum number of digits allowed in the customer-supplied PAN
value. Defaults to 19 if this value is not provided.
© 2022 FIS and/or its affiliates. All rights reserved.

 eProtect Integration Guide V4.19
33

Integration and Testing

34
 2.1.6 Intercepting the Checkout Form Submission
Without the eProtect implementation, order data is sent to your system when the submit button is clicked.
With the eProtect feature, a request must be sent to our server to retrieve the Registration ID for the card
number before the order is submitted to your system. To intercept the checkout form, you change the
input type from submit to button. The checkout button is built inside of a <script>/<noscript>
pair, but the <noscript> element uses a message to alert the customer instead of providing a default
submit.

Note that this also serves as a method for detecting JavaScript and informing customers that JavaScript
must be enabled in this checkout process.

<BODY>
...
<table>
...
<tr><td></td><td align="right">
<script>
document.write('<button type="button" id="submitId" onclick="callEprotect()">

Check out with paypage</button>');
</script>
<noscript>
<button type="button" id="submitId">Enable JavaScript or call us at

555-555-1212</button></noscript>
</td></tr>

...
</table>
...
</BODY>

 2.1.7 Handling Callbacks for Success, Failure, and Timeout
Your checkout page must include instructions on what methods we should use to handle callbacks for
success, failure, and timeout events. Add the code in the following three sections to achieve this.

 2.1.7.1 Success Callbacks

The success callback stores the responses in the hidden form response fields and submits the form. The
card number is scrubbed from the submitted form, and all of the hidden fields are submitted along with the
other checkout information.

<head>
...
<script>
...

function setEprotectResponseFields(response) {
document.getElementById('response$code').value = response.response;
document.getElementById('response$message').value = response.message;
document.getElementById('response$responseTime').value = response.responseTime;
document.getElementById('response$vantivTxnId').value = response.vantivTxnId;
document.getElementById('response$checkoutId').value = response.checkoutId;
document.getElementById('response$type').value = response.type;
document.getElementById('response$accountRangeId').value = response.accountRangeId;
document.getElementById('response$firstSix').value = response.firstSix;
document.getElementById('response$lastFour').value = response.lastFour;

}

© 2022 FIS and/or its affiliates. All rights reserved.

 eProtect Integration Guide V4.19

Integration and Testing
function submitAfterEprotect (response) {
setEprotectResponseFields(response);
document.forms['fCheckout'].submit();
}
...
</script>
...

</head>

 2.1.7.2 Failure Callbacks

There are two types of failures that can occur when your customer enters an order: validation (user)
errors, and system (non-user) errors (see Table 1-3, "eProtect-Specific Response Codes Received in
Browsers or Mobile Devices" on page 14). The failure callback stops the transaction for non-user errors
and nothing is posted to your order handling system.

You have flexibility in the wording of the error text.

<head>
...

<script>
...
function onErrorAfterEprotect (response) {

setEprotectResponseFields(response);
if(response.response == '871') {

alert("Invalid card number. Check and retry. (Not Mod10)");
}
else if(response.response == '872') {

alert("Invalid card number. Check and retry. (Too short)");
}
else if(response.response == '873') {

alert("Invalid card number. Check and retry. (Too long)");
}
else if(response.response == '874') {

alert("Invalid card number. Check and retry. (Not a number)");
}
else if(response.response == '875') {

alert("We are experiencing technical difficulties. Please try again later or call 555-555-1212");
}
else if(response.response == '876') {

alert("Invalid card number. Check and retry. (Failure from Server)");
}
else if(response.response == '881') {

alert("Invalid card validation code. Check and retry. (Not a number)");
}
else if(response.response == '882') {

alert("Invalid card validation code. Check and retry. (Too short)");
}
else if(response.response == '883') {

alert("Invalid card validation code. Check and retry. (Too long)");
}

NOTE: When there is a timeout or you receive a validation-related error response code, be sure to
submit enough information to your order processing system to identify transactions that could not be
completed. This will help you monitor problems with the eProtect Integration and also have enough
information for debugging.
© 2022 FIS and/or its affiliates. All rights reserved.

 eProtect Integration Guide V4.19
35

Integration and Testing

36
else if(response.response == '889') {
alert("We are experiencing technical difficulties. Please try again later or call 555-555-1212");

}
return false;
}
...
</script>
...
</head>

 2.1.7.3 Timeout Callbacks

The timeout callback stops the transaction and nothing is posted to your order handling system.

Timeout values are expressed in milliseconds and defined in the sendToEprotect call, described in the
section, Handling the Mouse Click on page 31. We recommend a timeout value of 15000 (15 seconds).
See Setting Timeout Values on page 15 for more information.

You have flexibility in the wording of the timeout error text.

<head>
...
<script>
...
function timeoutOnEprotect () {
alert("We are experiencing technical difficulties. Please try again later or call

555-555-1212 (timeout)");
}
...

</script>
...
</head>

 2.1.8 Detecting the Availability of the eProtect API
In the event that the eProtect-api3.js cannot be loaded, add the following to detect availability. You
have flexibility in the wording of the error text.

</BODY>
...
<script>
function callEprotect() {
if(typeof eProtect !== 'function') {
alert("We are experiencing technical difficulties. Please try again later or call

555-555-1212 (API unavailable)");
</script>
...
</HTML>

A full HTML code example of a simple checkout page integrated with eProtect is shown in Appendix A,
"Code Samples and Other Information".
© 2022 FIS and/or its affiliates. All rights reserved.

 eProtect Integration Guide V4.19

Integration and Testing
 2.1.9 Using the Customer Browser JavaScript API for Apple Pay on the
Web

In this scenario, the Worldpay eProtect Customer Browser JavaScript API controls the fields on your
checkout page that hold sensitive card data. When the cardholder clicks the Apple Pay button,
communication is exchanged with Apple Pay via the JavaScript API to obtain the PKPaymentToken.
From this point forward, your handling of the transaction is identical to any other eProtect transaction. The
eProtect server returns a Registration ID (low-value token) and your server constructs the cnpAPI
transaction using that ID. See the Worldpay eProtect Integration Guide for JavaScript and HTML page
examples and more information on using the browser JavaScript API.

The steps that occur when a consumer initiates an Apple Pay purchase using your website application
are detailed below and shown in Figure 2-3.

1. When the consumer selects the Apple Pay option from your website, your site makes use of the
Apple Pay JavaScript to request payment data from Apple Pay.

2. When Apple Pay receives the call from your website and after the consumer approves the Payment
Sheet (using Touch ID), Apple creates a PKPaymentToken using your public key. Included in the
PKPaymentToken is a network (Visa, Mastercard, American Express, or Discover) payment token
and a cryptogram.

3. Apple Pay returns the Apple PKPaymentToken (defined in Apple documentation; please refer to
https://developer.apple.com/documentation/passkit/pkpaymenttoken) to your application.

4. Your website sends the PKPaymentToken to our secure server via the JavaScript Browser API and
eProtect returns a Registration ID.

5. Your website forwards the transaction data along with the Registration ID to your order processing
server, as it would with any eProtect transaction.

6. Your server constructs/submits a standard cnpAPI Authorization/Sale transaction using the
Registration ID, setting the <orderSource> element to applepay.

7. Using the private key, Worldpay decrypts the PKPaymentToken associated with the Registration ID
and submits the transaction with the appropriate information to the card networks for approval.

8. Worldpay sends the Approval/Decline message back to your system. This message is the standard
format for an Authorization or Sale response and includes the Worldpay token.

9. You return the Approval/Decline message to your website.
© 2022 FIS and/or its affiliates. All rights reserved.

 eProtect Integration Guide V4.19
37

https://developer.apple.com/library/content/documentation/PassKit/Reference/PaymentTokenJSON/PaymentTokenJSON.html
https://developer.apple.com/library/content/documentation/PassKit/Reference/PaymentTokenJSON/PaymentTokenJSON.html

Integration and Testing

38
FIGURE 2-1 Data/Transaction Flow - Customer Browser JavaScript API for Apple Pay Web
© 2022 FIS and/or its affiliates. All rights reserved.

 eProtect Integration Guide V4.19

Integration and Testing
 2.1.10 Using the Customer Browser JavaScript API for Visa Checkout
The operation of Visa Checkout is simple, but requires either the modification of your existing website or
development of new website that include the use of the Visa Checkout SDK and handling of the
encrypted data returned to your website by Visa Checkout. The basic steps that occur when a consumer
initiates an Visa Checkout purchase using your website are:

1. When the consumer selects the Visa Checkout option from your website, your site makes use of the
Visa Checkout SDK to request payment data from Visa Checkout.

2. When Visa Checkout receives the call from your website, Visa creates a Payment Success event
using the Worldpay API key or Encryption key. Included in the Payment Success event is encrypted
PAN data.

3. Visa Checkout returns the Payment Success event (defined in Visa documentation; see
https://developer.visa.com/products/visa_checkout/guides) to your website.

In this scenario, the Worldpay eProtect Customer Browser JavaScript API controls the fields on your
checkout page that hold sensitive card data. When the cardholder clicks the Visa Checkout button,
communication is exchanged with Visa Checkout via the JavaScript API to obtain the Payment Success
event.

From this point forward, your handling of the transaction is identical to any other eProtect transaction. The
eProtect server returns a Registration ID (low-value token) and your server constructs the transaction
using that ID (outlined in the following steps)

4. Your website sends the Payment Success event to our secure server via the JavaScript Browser API
and Worldpay decrypts the Payment Success event associated with the Registration ID. eProtect
then returns a Registration ID along with customer information from the decrypted data.

5. Your website forwards the transaction data along with the Registration ID to your order processing
server, as it would with any eProtect transaction.

6. Your server constructs/submits an Authorization/Sale transaction using the Registration ID.
7. Worldpay submits the transaction with the appropriate information to the card networks for approval.
8. Worldpay sends the Approval/Decline message back to your system. This message is the standard

format for an Authorization or Sale response and includes the Worldpay token.

9. You return the Approval/Decline message to your website.
After you finish making a payment, you update the payment information in Visa Checkout. To update
Visa Checkout from a Thank You page (next page to load after making the payment), you add a
one-pixel image to the page.
© 2022 FIS and/or its affiliates. All rights reserved.

 eProtect Integration Guide V4.19
39

https://developer.visa.com/products/visa_checkout/guides
https://developer.visa.com/products/visa_checkout/guides

Integration and Testing

40
FIGURE 2-2 Data/Transaction Flow - Worldpay Browser JavaScript API for Visa Checkout

 2.1.11 Adding Visa Checkout to the eProtect Customer Browser
JavaScript API

Integrating Visa Checkout into your web page includes the following:

• Requesting and Configuring the API Key, Encryption Key, and External Client ID
• Sending Worldpay the Required Fields
© 2022 FIS and/or its affiliates. All rights reserved.

 eProtect Integration Guide V4.19

Integration and Testing
 2.1.11.1 Requesting and Configuring the API Key, Encryption Key, and
External Client ID

Insert the following JavaScript into your checkout page:

<script type="text/javascript"
src="https://request.eprotect.vantivprelive.com/eProtect/eProtect-api3.js"></script>
<script>

function onVisaCheckoutReady() {
var ep = new eProtect();
V.init({

apikey: ep.getVisaCheckoutApiKey(), //Worldpay’s Visa Checkout API Key
encryptionKey:ep.getVisaCheckoutEncryptionKey(), //Worldpay’s Encryption key

 sourceId: "Merchant Defined Source ID",
externalClientId: "stefan_sandwiches", //Merchant client id - get this from

Worldpay implementations team
settings: {

 ...
},
paymentRequest: {
 ...

}
});
 ...
}
</script>

 2.1.11.2 Sending Worldpay the Required Fields

Insert the following to send the required fields to Worldpay:

V.on("payment.success", function(payment){
var eProtectRequest = {
 ...,

"visaCheckout": payment
 };
 new eProtect().sendToEprotect(eProtectRequest, formFields, submitAfterEprotect,
onErrorAfterEprotect, timeout);
}

For an example of a completed checkout page with these components (including encryptionKey), go
here:

https://www.testvantivcnp.com/checkout/checkout4VisaCheckout-prelive-sandbox.jsp.

For an example of a completed checkout page without encryptionKey, go here:

https://www.testvantivcnp.com/checkout/checkout3VisaCheckout-prelive-sandbox.jsp

Do not use this URL in a
production environment.
Contact Implementation for the
appropriate production URL.
© 2022 FIS and/or its affiliates. All rights reserved.

 eProtect Integration Guide V4.19
41

https://www.testlitle.com/checkout/checkout2VisaCheckout-prod-sandbox.jsp
https://www.testlitle.com/checkout/checkout2VisaCheckout-prod-sandbox.jsp

Integration and Testing

42
 2.2 Integrating iFrame into your Checkout Page

This section provides information and instructions for integrating the iFrame eProtect solution into your
checkout page. Review the section Creating a Customized CSS for iFrame on page 18 for information on
creating a style sheet. Also see https://www.testvantivcnp.com/iframe/ to view our iFrame example page.

 2.2.1 Integration Steps
Integrating the iFrame into you checkout page includes the following steps, described in the sections to
follow. For a full HTML code examples of iFrame eProtect implementations, see the HTML Checkout
Page Examples on page 96.

1. Loading the iFrame
2. Configuring the iFrame

3. Calling the iFrame for the Registration ID
4. Handling Callbacks

 2.2.2 Loading the iFrame
To load the iFrame from the eProtect application server to your customer's browser, insert the following
script tag into your checkout page:

<script src="https://request.eprotect.vantivprelive.com/eProtect/js/eProtect-iframe-
client4.min.js"></script>

NOTE: The URL in this example (in red) should only be used in the certification and testing
environment. Before using your checkout page with eProtect in a production environment, replace
the certification URL with the production URL (contact your Implementation Consultant for the
appropriate production URL).

Do not use this URL in a
production environment.
Contact Implementation for the
appropriate production URL.
© 2022 FIS and/or its affiliates. All rights reserved.

 eProtect Integration Guide V4.19

https://www.testvantivcnp.com/iframe/
https://www.testvantivcnp.com/iframe/

Integration and Testing
 2.2.3 Configuring the iFrame
To configure the iFrame after the page is loaded, you specify the required properties listed in Table 2-3
(other properties shown in the example below, are optional). You define a callback for errors, time-outs,
and to retrieve the paypageRegistrationId. In this example, this is called
eProtectiframeClientCallback.

If you wish to prevent the occurrence of ‘Flash of Un-styled Content’ (FOUC), structure your code to load
the iFrame and all related surrounding host page content in a hidden div. Once the iFrame reports it is
ready, your site shows the whole div. The variable iframeIsReady in the checkPayframeLoaded
function determines whether the iFrame is rendered so you can unhide the div.

function ready(callback) {

// in case the document is already rendered
if (document.readyState != 'loading') callback();
// modern browsers
else if (document.addEventListener) document.addEventListener('DOMContentLoaded', callback);
// IE <= 8 for browser's not supporting addEventListener property
else document.attachEvent('onreadystatechange', function() {

if (document.readyState == 'complete') callback();
});

}
ready(function() {

var configure = {
"paypageId":document.getElementById("request$paypageId").value,
"style":"test",
"reportGroup":document.getElementById("request$reportGroup").value,
"timeout":document.getElementById("request$timeout").value,
"div": "eProtectiframe",
"callback": eProtectiframeClientCallback,
"maskAfterSuccessValue": ‘Z’,
"checkoutIdMode": true,
"showCvv": true,
"months": {

"1":"January",
"2":"February",
"3":"March",
"4":"April",
"5":"May",
"6":"June",
"7":"July",
"8":"August",
"9":"September",
"10":"October",
"11":"November",
"12":"December"

},
"numYears": 8,
"tooltipText": "A CVV is the 3 digit code on the back of your Visa, Mastercard and Discover or a 4 digit

code on the front of your American Express",
"tabIndex": {

"cvv":1,
"accountNumber":2,
"expMonth":3,
"expYear":4

},
"placeholderText": {

"cvv":"CVV",
"accountNumber":"Account Number",
"pin":"PIN Placeholder"

},
© 2022 FIS and/or its affiliates. All rights reserved.

 eProtect Integration Guide V4.19
43

Integration and Testing

44
"inputsEmptyCallback": inputsEmptyCallback,
"enhancedUxFeatures" : {

"inlineFieldValidations": true,
"expDateValidation": false,
"enhancedUxVersion": 2
}

"minPanLength": 16,
"iFrameTitle":"My Custom Title",
"label" : {
 "accountNumber":"Account Number",
 "expDate" : "Exp Date",

"cvv" : "CVV",
 "pin":"Pin"
 },

};
if(typeof EprotectIframeClient === 'undefined') {

alert("We are experiencing technical difficulties. Please try again or call us to complete your
order");

//You may also want to submit information you have about the consumer to your servers to facilitate
debugging like customer ip address, user agent, and time

}
else {
var eProtectiframeClient = new EprotectIframeClient(configure);

function checkPayframeLoaded(){

if(iframeIsReady===true){
//code changes

}
 };

checkPayframeLoaded();

eProtectiframeClient.autoAdjustHeight();
});

window.onmessage = function(event) {

if(event.data === "checkoutWithEnter") {
//Captures Enter event from iFrame

var message = {
"id": document.getElementById("request$merchantTxnId").value,
"orderId": document.getElementById("request$orderId").value

};
startTime = new Date().getTime();
payframeClient.getCheckoutPin(message);
return false;

}
};

TABLE 2-3 Common Properties

Property Description

paypageId (Required) The unique number assigned by Implementation.

style (Required) The CSS filename (excluding the ‘.css’). For example, if
the style sheet filename is mysheet1.css, the value for this property
is mysheet1.
© 2022 FIS and/or its affiliates. All rights reserved.

 eProtect Integration Guide V4.19

Integration and Testing
reportGroup (Required, but not used by eProtect integrations on the Core
platform.) The cnpAPI attribute that defines under which merchant
sub-group this transaction will be displayed in eCommerce iQ
Reporting and Analytics.

timeout (Required) The number of milliseconds before a transaction times out
and the timeout callback in invoked. If the response from the primary
server takes more than five (5) seconds, the request is automatically
sent to our secondary server. To ensure the secondary server has
time to respond, Worldpay recommends a timeout value of 15000 (15
seconds).

div (Required) The ID of the HTML div element where our iFrame is
embedded as innerHTML.

callback (Required) The function element that our iFrame calls with a single
parameter representing a JSON dictionary. The keys in the callback
are:

*paypageRegistrationId
*bin
*type
*firstSix
*lastFour
*expDate
*vantivTxnId
*accountRangeId

*orderId
*response
*responseTime
*message
*reportGroup
*id
*timeout

checkoutWithEnter (Optional) Determines whether the checkout function is activated (the
outer frame is able to receive the Enter key message event) when
pressing the Enter key within the iFrame. This enables you to trigger
the form submit.
This functionality is available for Account number, CVV, and PIN.

See Capturing the Enter Event from the iFrame for more information.

months (Required) Determines how the expMonth property is displayed
(customizable).

checkoutIdMode (Optional) Determines whether checkoutIdMode is activated. Set
the value to true to establish a rule allowing the capture of the CVV
only (in order to receive the checkoutId). Adding this field hides all
fields in the iFrame, except CVV and CVV-related fields (including
tooltips, etc.).

checkoutPinMode (Optional) Determines whether checkoutPinMode is activated (for
use with EBT/SNAP cards only). Set the value to true to establish a
rule allowing the capture of the PIN only (in order to receive the
pinCheckoutId). Adding this field hides all fields in the iFrame,
except PIN. Do not use with checkoutIdMode or
checkoutCombinedMode.

TABLE 2-3 Common Properties (Continued)

Property Description
© 2022 FIS and/or its affiliates. All rights reserved.

 eProtect Integration Guide V4.19
45

Integration and Testing

46
checkoutCombinedMode (Optional) Determines whether checkoutCombinedMode is
activated (for use with EBT/SNAP cards only). Set the value to true to
establish a rule allowing the capture of the account number and PIN
at the same time (to be exchanged for paypageRegistrationId
and pinCheckoutId, respectively). Adding this field hides all fields
in the iFrame, except account number and PIN. Do not use with
checkoutIdMode or checkoutPinMode.

inputsEmptyCallback (Optional) When a consumer returns to your checkout page to edit
non-payment information, this function determines whether the Card
number and security code fields are empty, and indicates whether to
return this information in your callback. See Creating a Customized
CSS for iFrame on page 18 for more information.

inlineFieldValidations (Optional) An option of enhancedUxFeatures.Determines whether
in-field validations are performed (set value to true). See Creating a
Customized CSS for iFrame on page 18 for more information.

enhancedUxVersion (Optional) An option of enhancedUxFeatures. Links to v5.5.13 of
the Font Awesome stylesheet (mandatory when using the Visa logo
on your checkout page). Set the value to 2 to obtain version 5.15.3.
Any other value passed or lack of parameter results in continued use
of Font Awesome version 4.7.0.

height (Optional) The height (in pixels) of the iFrame. There are three
options:

• You can pass height as an optional parameter when configuring
the client.

• You can call autoAdjustHeight in the client to tell the iFrame to
adjust the height to exactly the number of pixels needed to display
everything in the iFrame without displaying a vertical scroll bar
(recommended). Note: some browsers may not support this
option.

• You can ignore height. The iFrame may display a vertical scroll
bar, depending upon your styling of the div containing the iFrame.

noScrollBar (Optional) Determines whether to disable the vertical scrollbar in the
iFrame (set value to true).

If this property is omitted (existing default behavior), the iFrame
shows the scrollbar as needed. Set this property value to true to
make the scrollbar inside the iFrame permanently disabled.

htmlTimeout (Optional) The amount of time (in milliseconds) to wait for the iFrame
to load before responding with an ‘884’ error code. The default
timeout value is 5000 (5 seconds). If you receive frequent ‘884’ errors
due to the iFrame failing to load, increase the htmlTimeout value.

TABLE 2-3 Common Properties (Continued)

Property Description
© 2022 FIS and/or its affiliates. All rights reserved.

 eProtect Integration Guide V4.19

Integration and Testing
maskAfterSuccessValue (Optional) Sets values previously inputted and returned in the iFrame
to default values. Set to a single character to mask the PAN and CVV
with the character.
When the value is not set (default) or set with more than one
character, the PAN is masked with 'X' except the last 4 digits; the
CVV is masked with 'XXX.’

When the value is blank, the PAN and CVV values are cleared.

minPanLength (Optional) Minimum number of digits that must be present in the
customer-supplied PAN value. Defaults to 13 if this value is not
provided.

maxPanLength (Optional) Maximum number of digits allowed in the
customer-supplied PAN value. Defaults to 19 if this value is not
provided.

customErrorMessages (Optional - iFrame Version 4 only) Determines the custom error
messages to display for input errors. The object keys are the error
codes listed in Table 2-5, "Default Error Messages". If an error code
is omitted, the default value displays.
Use null to display no error message for a specific error code.
See Handling Errors - iFrame Version 4 on page 55 for more
information.

iFrameTitle (Optional) Specifies a custom title for the iFrame. If you omit this
property (default behavior), the iFrame shows the default value
Secure Card Data Capture.

label (Optional) Specifies a custom label for card number, expiration date,
CVV, and PIN. If you omit this property (default behavior), the iFrame
shows the following default values:

Card Number: Card number

Exp. date: Card Expiration Date

CVV: Security code

PIN: Pin

TABLE 2-3 Common Properties (Continued)

Property Description
© 2022 FIS and/or its affiliates. All rights reserved.

 eProtect Integration Guide V4.19
47

Integration and Testing

48
 2.2.4 Capturing the Enter Event from the iFrame
You can configure your checkout page to receive the enter key message event when the shopper presses
the enter key within the iFrame. This enables the outer frame to receive the enter key message event and
trigger the form submit event handler. This functionality is available for Account number, CVV, and PIN.

There are two configuration options:

Option 1:
window.onmessage = function(event) {

if(event.data === "checkoutWithEnter") {
var message = {

"id": document.getElementById("request$merchantTxnId").value,
"orderId": document.getElementById("request$orderId").value

};
startTime = new Date().getTime();
payframeClient.getCheckoutPin(message);
return false;

}
};

Option 2:
window.addEventListener("message", function(event) {

if(event.data === "checkoutWithEnter") {
var messageToSend = {

"id": document.getElementById("request$merchantTxnId").value,
"orderId": document.getElementById("request$orderId").value

};
startTime = new Date().getTime();
payframeClient.getCheckoutPin(messageToSend);
return false;

}
});

 2.2.5 Calling the iFrame for the Registration ID
After your customer clicks the Submit/Complete Order button, your checkout page must call the iFrame to
get an eProtect Registration ID. In the onsubmit event handler of your button, add code to call eProtect
to get a Registration ID for the account number and CVV2. Include the parameters listed in Table 2-4.

document.getElementById("fCheckout").onsubmit = function(){
var message = {

"id":document.getElementById("request$merchantTxnId").value,
"orderId":document.getElementById("request$orderId").value,
};

eProtectiframeClient.getPaypageRegistrationId(message);
return false;

};

 2.2.6 Calling the iFrame for the Checkout ID
Additionally, your checkout page can call the iFrame to exchange the CVV value for a checkoutId
(low-value-token with a 24-hour lifespan). Use this when you store the high-value token
(registrationId) on file for a consumer, but still want that consumer to populate the CVV with each
eProtect transaction. See the parameters listed in Table 2-4 for more information.
© 2022 FIS and/or its affiliates. All rights reserved.

 eProtect Integration Guide V4.19

Integration and Testing
Note that the PCI non-sensitive flag is not applicable for the getCheckoutId function.

var message = {
"id":document.getElementById("request$merchantTxnId").value,
"orderId":document.getElementById("request$orderId").value
};

 startTime = new Date().getTime();
iframeClient.getCheckoutId(message);

 2.2.6.1 Notes on the PCI Non-Sensitive Value Feature

eProtect is designed to capture branded credit cards from the major card networks including Visa,
Mastercard, American Express, Discover, JCB, and EBT/SNAP cards. The eProtect PCI Non-Sensitive

TABLE 2-4 Event Handler Parameters

Parameter Description

id The merchant-assigned unique value representing this transaction in your
system. The same value must be used for retries of the same failed eProtect
transaction but must be unique between the eProtect transaction,
authorization, capture, and refund for the same order.
Type: String

Max Length: 25 characters
Worldpay recommends that the values for id and orderId must be different
and unique so that we can use these identifiers for reconciliation or
troubleshooting.

orderId The merchant-assigned unique value representing the order in your system
(used when linking authorizations, captures, and refunds, and for retries).

Type: String
Max Length: 25 characters
Worldpay recommends that the values for id and orderId be different and
unique so that we can use these identifiers for reconciliation or
troubleshooting. If you do not have the order number available at this time,
please generate another unique number to send as the orderId (and send it
to your servers to map it to the order number that you generate later).

pciNonSensitive (Optional) Bypasses existing MOD10 validation for only non-sensitive
cardholder data as defined by PCI (e.g. Private Label) for tokenization. A value
of true bypasses MOD10 validation.
A value of false allows certain methods of payment other private label cards
to make use of the MOD10 check and return the BIN (first 6 digits of card
number). When you set the pciNonSensitive parameter to false, the type
attribute is not returned (because the method of payment cannot be
determined) and does not cause a validation failure.

Note: If you use this parameter with a value of true, the card type and BIN
are not returned in the response.
See Notes on the PCI Non-Sensitive Value Feature, next.
© 2022 FIS and/or its affiliates. All rights reserved.

 eProtect Integration Guide V4.19
49

Integration and Testing

50
feature has the capability to capture and tokenize non-network branded payment types, such as private
label and Worldpay gift cards. The PCI Non-Sensitive feature can tokenize 13-19 digit values, as long as
the Worldpay message interface specification supports that payment type.

Implementation of the pciNonSensitive parameter may require augmentation of your checkout page
to include a method whereby your customer chooses a payment type (e.g., a drop-down box). You must
capture the non-network branded payment type in order to send the appropriate flag when calling
eProtect.

 2.2.7 Calling the iFrame for the Checkout PIN
Your checkout page can call the iFrame to exchange the PIN value for a pinCheckoutId, a
low-value-token with a 24-hour lifespan. Use this when you store the high-value token on file for a
consumer, but still want that consumer to populate the PIN with each eProtect transaction. See the
parameters listed in Table 2-4 for more information.

In the case of an EBT multi-tender payment, if other forms of payment(s) are declined, reload the EBT
PIN iFrames to clear out past values and prompt the cardholder to re-enter their EBT card information. If
the EBT PIN low value token (LVT) was obtained in the original flow but not used, the point of sale
software can choose to use the LVT PIN and simply hide the PIN iFrame. This reduces the number of low
value tokens obtained as well as cost of using the service.

Note that the PCI non-sensitive flag is not applicable for the getCheckoutPin function.

var message = {
"id": document.getElementById("request$merchantTxnId").value,
"orderId": document.getElementById("request$orderId").value

};
startTime = new Date().getTime();
iframeClient.getCheckoutPin(message);

To view a sample page and to test submission of a PIN value, go here:

https://www.testvantivcnp.com/checkout/checkout-pin.html

 2.2.8 Calling the iFrame for the Registration ID and Checkout PIN
For added convenience, your checkout page can call the iFrame to exchange the account number (PAN)
for a paypageRegistrationId and the PIN value for a pinCheckoutId at the same time. To do this,
use the checkoutCombinedMode option when you configure the iFrame. (See the parameters listed in
Table 2-3 for more information).

NOTE: The PCI Non-Sensitive Value feature is designed for account numbers, and is therefore not
applicable for sensitive authentication data requests (such as PIN, CVV2, etc.).

NOTE: The pinCheckoutId is for use with EBT/SNAP cards only.
© 2022 FIS and/or its affiliates. All rights reserved.

 eProtect Integration Guide V4.19

https://www.testvantivcnp.com/checkout/checkout-pin.html

Integration and Testing
For security reasons, the iFrame makes two separate requests to eProtect: one to obtain the Registration
ID and one to obtain the Checkout PIN. Each of these requests receives its own vantivTxnId. Use the
getCombinedTokens function to call the iFrame to obtain the Registration ID and Checkout PIN.

Note that the PCI non-sensitive flag is not applicable for the getCombinedTokens function.

var message = {
"id": document.getElementById("request$merchantTxnId").value,
"orderId": document.getElementById("request$orderId").value

};
startTime = new Date().getTime();
iframeClient.getCombinedTokens(message);

To view a sample page and to test submission of a PIN value and PAN value at the same time, go here:

https://www.testvantivcnp.com/checkout/combined-tokens.html

 2.2.9 Handling Callbacks
After the iFrame has received the paypageRegistrationId or checkoutId, or has received an error
or timed out, the iFrame calls the callback specified when the client was constructed. In your callback, you
can determine success or failure by inspecting response.response (870 indicates success). The
accountRangeId in the callback is only seen by merchants enabled for Issuer Insights, a FIS-Worldpay
Value-added Service.

You can check for a timeout by inspecting response.timeout (if it is defined, a timeout has occurred).

var eProtectiframeClientCallback = function(response) {

if (response.timeout) {
alert("We are experiencing technical difficulties. Please try again or call us to complete your order");

//You may also want to submit information you have about the consumer to your servers to facilitate
debugging like customer ip address, user agent, and time

}
else {

document.getElementById('response$code').value = response.response;
document.getElementById('response$message').value = response.message;
document.getElementById('response$responseTime').value = response.responseTime;
document.getElementById('response$reportGroup').value = response.reportGroup;
document.getElementById('response$merchantTxnId').value = response.id;
document.getElementById('response$orderId').value = response.orderId;
document.getElementById('response$vantivTxnId').value = response.vantivTxnId;
document.getElementById('response$checkoutId').value = response.checkoutId;
document.getElementById('response$type').value = response.type;
document.getElementById('response$accountRangeId').value = response.accountRangeId;
document.getElementById('response$lastFour').value = response.lastFour;
document.getElementById('response$firstSix').value = response.firstSix;

NOTE: The checkoutCombinedMode is for use with EBT/SNAP cards only.

NOTE: When there is a timeout or you receive a validation-related error response code, be sure to
submit enough information (for example, customer IP address, user agent, and time) to your order
processing system to identify transactions that could not be completed. This will help you monitor
problems with the eProtect Integration and also have enough information for debugging.
© 2022 FIS and/or its affiliates. All rights reserved.

 eProtect Integration Guide V4.19
51

���https://www.testvantivcnp.com/checkout/combined-tokens.html

Integration and Testing

52
document.getElementById('paypageRegistrationId').value = response.paypageRegistrationId;
document.getElementById('bin').value = response.bin;
document.getElementById('response$expMonth').value = response.expMonth;
document.getElementById('response$expYear').value = response.expYear;
if(response.response === '870') {

//Submit the form
}
else if(response.response === '871' || response.response === '872' || response.response === '873' ||

response.response === '874' || response.response === '876') {
//Recoverable error caused by user mis-typing their credit card

alert("Please check and re-enter your credit card number and try again.");
}
else if(response.response === '881' || response.response === '882' || response.response === 883) {

//Recoverable error caused by user mis-typing their credit card
alert("Please check and re-enter your card validation number and try again.");

}
else if(response.response === '884') {

//Frame failed to load, so payment can't proceed.
//You may want to consider a larger timeout value for the htmlTimeout property
//You may also want to log the customer ip, user agent, time, and paypageId for debugging.
//Here, we hide the frame to remove the unsightly browser error message from the middle of our payment

page that may eventually display
$('#eProtectiframe').hide();
// and disable the checkout button
$('#submitButton').attr('disabled','disabled');

}
else {

//Non-recoverable or unknown error code
alert("We are experiencing technical difficulties. Please try again or call us to complete your

order");
//You may also want to submit the vantivTxnId and response received, plus information you have about

the consumer to your servers to facilitate debugging, i.e., customer ip address, user agent and time
}

}
};

 2.2.9.1 Handling Callbacks When Using checkoutCombinedMode

When using checkoutCombinedMode, the callback response container holds two separate response
objects:

• a response for the account number (PAN) tokenization request
• a response for the PIN tokenization request.

Assuming you name the parameter received by callback function responses:

• the response for the PAN tokenization request is held in responses.panResponse and contains
the eProtect Registration ID (paypageRegistrationId).

• the response for the PIN tokenization request is held in responses.pinResponse and contains the
low-value PIN token (pinCheckoutId).

• responses.panResponse and responses.pinResponse each contain all the fields that a
regular response contains, including their own separate vantivTxnId values.

Handling checkoutCombinedMode Errors

If an error occurs before the iFrame finishes loading, the response includes only one object. This may
happen if the iFrame HTML fails to load. In this case, responses.panResponse and
responses.pinResponse are undefined, and responses.response contains the error code.
© 2022 FIS and/or its affiliates. All rights reserved.

 eProtect Integration Guide V4.19

Integration and Testing
The two requests are independent of one another, and it is possible that:

• both requests succeed,
• both requests timeout or fail, or
• one request succeeds and the other request fails.

If only one request fails, we suggest that you add logic to re-submit only the PAN or PIN for tokenization.
This reduces the number of low-value tokens obtained as well as the cost of using the service.

To resubmit the PIN only:

• Reload the iFrame and configure it with checkoutPinMode set to true.

To resubmit the PAN only:

• Ensure that the showCvv is not set to true when configuring the iFrame.
• Use the CSS or jQuery to hide the Expiration Date drop-down.

var eProtectiframeClientCallback = function(responses) {
if (responses.response && responses.response=== '884')
{

//Frame failed to load, so payment can't proceed.
//You may want to consider a larger timeout value for the htmlTimeout property
//You may also want to log the customer ip, user agent, time, and paypageId for debugging.

//Here, we hide the frame to remove the unsightly browser error message from the middle of our payment

page that may eventually display
$('#eProtectiframe').hide();

// and disable the checkout button
$('#submitButton').attr('disabled','disabled');

}
else if (!responses.panResponse || !responses.pinResponse ||

 (responses.panResponse.timeout && responses.pinResponse.timeout)){
// Malformed response or both PIN and PAN requests timed out (eProtect system is completely unavailable)

alert("We are experiencing technical difficulties. Please try again or call us to complete your
order");

//You may also want to log the customer ip, user agent, and time for debugging
}
else {

// There are two responses to process (PIN and PAN)

if (responses.panResponse.response){
// Extract the PAN tokenization response
document.getElementById('panResponse$code').value = responses.panResponse.response;
document.getElementById('panResponse$message').value = responses.panResponse.message;
document.getElementById('panResponse$responseTime').value = responses.panResponse.responseTime;
document.getElementById('panResponse$targetServer').value = responses.panResponse.targetServer;
document.getElementById('response$paypageRegistrationId').value =

responses.panResponse.paypageRegistrationId;
document.getElementById('panResponse$vantivTxnId').value = responses.panResponse.vantivTxnId;
document.getElementById('panResponse$merchantTxnId').value = responses.panResponse.id;
document.getElementById('panResponse$orderId').value = responses.panResponse.orderId;
document.getElementById('panResponse$reportGroup').value = responses.panResponse.reportGroup;
document.getElementById('panResponse$type').value = responses.panResponse.type;
document.getElementById('panResponse$lastFour').value = responses.panResponse.lastFour;
document.getElementById('panResponse$firstSix').value = responses.panResponse.firstSix;
document.getElementById('bin').value = responses.panResponse.bin;
document.getElementById('paypageRegistrationId').value = responses.panResponse.paypageRegistrationId;

}

if (responses.pinResponse.response) {
© 2022 FIS and/or its affiliates. All rights reserved.

 eProtect Integration Guide V4.19
53

Integration and Testing

54
// Extract the PIN tokenization response
document.getElementById('pinResponse$code').value = responses.pinResponse.response;
document.getElementById('pinResponse$message').value = responses.pinResponse.message;
document.getElementById('pinResponse$responseTime').value = responses.pinResponse.responseTime;
document.getElementById('pinResponse$targetServer').value = responses.pinResponse.targetServer;
document.getElementById('response$pinCheckoutId').value = responses.pinResponse.pinCheckoutId;
document.getElementById('pinResponse$vantivTxnId').value = responses.pinResponse.vantivTxnId;
document.getElementById('pinResponse$merchantTxnId').value = responses.pinResponse.id;
document.getElementById('pinResponse$orderId').value = responses.pinResponse.orderId;
document.getElementById('pinResponse$reportGroup').value = responses.pinResponse.reportGroup;
document.getElementById('pinCheckoutId').value = responses.pinResponse.pinCheckoutId;

}

if (responses.panResponse.response && responses.panResponse.response == '870' &&
responses.pinResponse.response && responses.pinResponse.response == '870') {

// Both PAN and PIN tokenizations succeeded. Submit the form
}

else if (responses.panResponse.response && responses.panResponse.response == '870') {
// The PAN tokenization succeeded, but the PIN tokenization did not
if (responses.pinResponse.timeout || responses.pinResponse.response == '893' ||

responses.pinResponse.response == '894') {
// PIN tokenization timed out or failed because user mistyped their PIN.
// It makes sense to resubmit PIN only for tokenization
// Add code here to save responses.panResponse.paypageRegistrationId and load a PIN-only iframe

}
else {

// PIN tokenization returned non-recoverable or unknown error code
alert("We are experiencing technical difficulties. Please try again or call us to complete your

order");
// You may also want to submit the responses.pinResponse.vantivTxnId and

responses.pinResponse.response received,
// plus information you have about the consumer to your servers to facilitate debugging, i.e.,

customer ip address, user agent and time
}

}
else if (responses.pinResponse.response && responses.pinResponse.response == '870') {

// The PIN tokenization succeeded, but the PAN tokenization did not
if (responses.panResponse.timeout || responses.panResponse.response == '871' ||

responses.panResponse.response == '872' || response.panResponse.response == '873' ||
response.panResponse.response == '874' || response.panResponse.response == '876') {

// PAN tokenization timed out or failed because user mistyped their account number.
// It makes sense to resubmit PAN only for tokenization
// Add code here to save responses.pinResponse.pinCheckoutId and load a PAN-only iframe

}
else {

// PAN tokenization returned non-recoverable or unknown error code
alert("We are experiencing technical difficulties. Please try again or call us to complete your

order");
// You may also want to submit the responses.panResponse.vantivTxnId and

responses.panResponse.response received,
// plus information you have about the consumer to your servers to facilitate debugging, i.e.,

customer ip address, user agent and time
}

}
else if (responses.pinResponse.response && (responses.pinResponse.response == '893' ||
responses.pinResponse.response == '894')

&& responses.panResponse.response && (responses.panResponse.response == '871'
|| responses.panResponse.response == '872' || responses.panResponse.response == '873'
|| responses.panResponse.response == '873' || responses.panResponse.response == '874'
|| responses.panResponse.response == '876')) {

// Both PAN and PIN tokenization failed because of user mistakes. No need to load a different iframe.
alert("Please check and re-enter your account number and PIN and try again");

}
else {
© 2022 FIS and/or its affiliates. All rights reserved.

 eProtect Integration Guide V4.19

Integration and Testing
// Both PAN and PIN tokenizations returned non-recoverable or unknown error codes.
alert("We are experiencing technical difficulties. Please try again or call us to complete your order");
//You may also want to submit the vantivTxnId and response values received,
// plus information you have about the consumer to your servers to facilitate debugging, i.e., customer

ip address, user agent and time
}

}
}

 2.2.9.2 Handling Errors - iFrame Version 3

In case of errors in the iFrame, the iFrame adds an error class to the field that had the error. You can use
those classes in the CSS you give FIS-Worldpay Implementation to provide error styles. The codes
correspond to the response codes outlined in eProtect-Specific Response Codes on page 13.

• In case of error on the accountNumber field, these classes are added to the div in the iFrame with
the existing class numberDiv.
• error-871
• error-872
• error-874
• error-876

• In case of error on the cvv and PIN fields, these classes are added to the div in the iFrame with the
existing class cvvDiv or pinDiv:
• error-881
• error-882

In either case, the callback is still invoked. When the input field with the error receives the focus event, we
clear the error classes. Some sample CSS to indicate an error given these classes is as follows:

.error-871::before {
content: "Account number not Mod10";

}
.error-871>input {

background-color:red;
}

 2.2.9.3 Handling Errors - iFrame Version 4

In case of errors in the iFrame—and for the iFrame to be accessible—Version 4 iFrame uses JavaScript
to add an error message to the div containing the field with the error.

Use the customErrorMessages property of the config object in the iFrame to specify a custom error
message for input errors. The value of the customErrorMessages property is an object whose keys are
the error codes listed in Table 1-3, "eProtect-Specific Response Codes Received in Browsers or Mobile
Devices". The values are the error messages displayed when the corresponding error is detected.

NOTE: The error handling mechanism described for Version 3 above continues to operate in
iFrame Version 4 and can be used to add styling to fields containing errors. However, using the
::before and ::after CSS pseudo-elements to add error messages (as shown in the code
example for Version 3 above) is not recommended. Text added using this method cannot be
detected by assistive technologies, e.g., screen readers.
© 2022 FIS and/or its affiliates. All rights reserved.

 eProtect Integration Guide V4.19
55

Integration and Testing

56
You can specify separate error messages using the keys 886-month and 886-year for invalid expiration
month and invalid expiration year. eProtect can display the expiration year error (key 886) when either the
expiration month error, expiration year error or both are encountered.

If a custom error message is not provided for an error code, the default error message displays (as listed
in Table 2-5). Use null to display no error message for a specific error code.

Error Message Clearing

In iFrame Version 4, error messages and CSS error classes are not cleared when the input field with the
error receives the focus event (as happens in version 3 for CSS error classes). Errors in Version 4 are
cleared when:

• The form is submitted.
• A field passes an in-line field validation, if the in-line field validation feature is enabled (by setting the

enhancedUxFeatures.inlineFieldValidations property to true).

This makes the error messages available to customers who use screen readers when they return to a
field to fix an error.

var
configure
= {

"paypageId":document.getElementById("request$paypageId").value,
,
…
"customErrorMessages": {

"871":"Not enough digits in card num",
},
…

};

NOTE: Specifying null for an error code suppresses the error message for that error, however the
CSS classes described above continue to be used.
© 2022 FIS and/or its affiliates. All rights reserved.

 eProtect Integration Guide V4.19

Integration and Testing

TABLE 2-5 Default Error Messages

customErrorMessages
Key Default Error Message Notes

871 Invalid account number Triggered when card number
fails mod10 check.

872 Account number too short

873 Account number too long

874 Account number not numeric

876 Invalid account number

881 Card validation number not numeric

882 Card validation number too short

883 Card validation number too long

886-month Expiration month invalid

886-year Expiration year invalid

886 Expiration date invalid Triggered when either the
expiration moth, expiration year,
or both are invalid.

893 PIN too short

894 PIN too long
© 2022 FIS and/or its affiliates. All rights reserved.

 eProtect Integration Guide V4.19
57

Integration and Testing

58
 2.3 Integrating eProtect Into Your Mobile Application

This section provides instructions for integrating the eProtect feature into your native mobile application.
Unlike the eProtect browser checkout page solution, the native mobile application does not interact with
the eProtect JavaScript in a browser. Instead, you use an HTTP POST in a native mobile application to
send account numbers to Worldpay and receive a Registration ID in the response. This section also
provides information on the following payment methods:

• Using the Worldpay Mobile API for Apple Pay

• Using the Worldpay Mobile API for Visa Checkout
• Using the Worldpay Mobile API for Google Pay

 2.3.1 Creating the POST Request
You structure your POST request as shown in the Sample Request. Use the components listed in
Table 2-6. The URLs and User Agent examples in this table (in red) should only be used in the
certification and testing environment. For more information on the appropriate User Agent (iOS and
Android versions can differ), see the HTTP standard at http://www.ietf.org/rfc/rfc2616.txt section 14.43.

TABLE 2-6 POST Headers, Parameters, and URL

Component Element Description

Headers
(optional)

Content-Type: application/x-www-form-urlencoded
Host: request.eprotect.vantivprelive.com
User-Agent = "User-Agent" ":" 1*(product | comment)
For example: User-Agent: Vantiv/1.0 CFNetwork/459 Darwin/10.0.0.d3

Parameters
(required)

paypageId The unique number assigned by Implementation.

reportGroup (Not used by eProtect integrations on the Core platform.) A
unique value that you assign.

orderId A unique value that you assign (string, max length: 25 char.). See
full definition on page 33.

id A unique value that you assign (string, max length: 25 char.). See
full definition on page 33.

accountNumber A unique value that you assign. (Not used in Apple Pay
transactions.)
© 2022 FIS and/or its affiliates. All rights reserved.

 eProtect Integration Guide V4.19

Integration and Testing
 2.3.1.1 Sample Request

The following is an example POST to request a Registration ID:

$ curl --verbose -H "Content-Type: application/x-www-form-urlencoded" -H "Host:
request.eprotect.vantivprelive.com" -H "User-Agent: Vantiv/1.0 CFNetwork/459 Darwin/10.0.0.d3"
-d"paypageId=a2y4o6m8k0&
reportGroup=*merchant1500&orderId=PValid&id=12345&accountNumber=ACCOUNT_NUMBER&cvv=CVV
"https://request.eprotect.vantivprelive.com/eProtect/paypage

 2.3.1.2 Sample Response

The response received in the body of the POST response is a JSON string similar to the following:

{"bin":"410000","firstSix":"410000","lastFour":"0001","accountRangeId":"276989386848","paypageReg
istrationId":"amNDNkpWckVGNFJoRmdNeXJUOHl4Skh1TTQ1Z0t6WE9TYmdqdjBJT0F5N28zbUpxdlhGazZFdmlCSzdTN3p
tKw\u003d\u003d","type":"VI","id":"12345","vantivTxnId":"83088059521107596","message":"Success","
orderId":"PValid","reportGroup":"*merchant1500","response":"870","responseTime":"2014-02-07T17:04
:04"}

Parameters
(optional)

pciNonSensitive Bypasses existing MOD10 validation for only non-sensitive
cardholder data as defined by PCI (e.g. Private Label) for
tokenization. A value of true bypasses MOD10 validation.
A value of false allows certain methods of payment other
private label cards to make use of the MOD10 check and return
the BIN (first 6 digits of card number). When you set the
pciNonSensitive parameter to false, the type attribute is not
returned (because the method of payment cannot be determined)
and does not cause a validation failure.

See Notes on the PCI Non-Sensitive Value Feature, next.
Note: If you use this parameter with a value of true, the card
type and BIN are not returned in the response.

cvv The card validation number, either the CVV2 (Visa), CVC2
(Mastercard), or CID (American Express and Discover) value.

URL https://request.eprotect.vantivprelive.com/eProtect/paypage

NOTE: The URL in this example script (in red) should only be used in the certification and testing
environment. Before using your checkout page with eProtect in a production environment, replace
the certification URL with the production URL (contact your Implementation Consultant for the
appropriate production URL).

TABLE 2-6 POST Headers, Parameters, and URL (Continued)

Component Element Description

Do not use this URL in a
production environment.
Contact Implementation for the
appropriate production URL.
© 2022 FIS and/or its affiliates. All rights reserved.

 eProtect Integration Guide V4.19
59

Integration and Testing

60
 2.3.1.3 Sample Response - Method of Payment not Identified

The response received when eProtect cannot determine the method of payment and the request uses a
pciNonsensitive value of false is similar to the following:

jQuery172022762244707120605_1616695763529({"paypageRegistrationId":"0000009999999990000","bin":"0
00000","targetServer":"primary","vantivTxnId":"82930559381342490","orderId":"order_123","response
":"870","responseTime":"2021-03-25T18:09:52","message":"Success","reportGroup":"*merchant1500","i
d":"987012"})

Table 2-7 lists the parameters included in the response.

TABLE 2-7 Parameters Returned in POST Response

Parameter Description

bin The bank identification number (BIN), which is the first six digits of the
credit card number

firstSix (Mirrored back from the request) The first six digits of the credit card
number.

lastFour (Mirrored back from the request) The last four digits of the credit card
number.

accountRangeId The Worldpay-assigned value representing the account range of the
card. (Only seen by merchants enabled for Issuer Insights, an
FIS-Worldpay Value-added Service.)

This value can be used to correlate various data points across card
types and issuers. The account range ID is tied to the Issuer Insights
Scheduled Secure Report (SSR). See the Worldpay eComm Scheduled
Secure Reports Reference Guide for more information on the Issuer
Insights report.

paypageRegistrationId The temporary identifier used to facilitate the mapping of a token to a
card number.

type The method of payment for this transaction (VI=Visa, MC=Mastercard,
AX=Amex, DI=Discover). Not returned when the method of payment
cannot be determined.

id (Mirrored back from the request) The merchant-assigned unique value
representing this transaction in your system.
Type: String

Max Length: 25 characters

vantivTxnId The automatically-assigned unique transaction identifier.

message The transaction response returned by Worldpay, corresponding to the
response reason code. If the transaction was declined, this message
provides a reason.
© 2022 FIS and/or its affiliates. All rights reserved.

 eProtect Integration Guide V4.19

Integration and Testing
 2.3.2 Using the Worldpay Mobile API for Apple Pay

In this scenario, your native iOS application performs an HTTPS POST of the Apple Pay
PKPaymentToken using the Worldpay Mobile API for Apple Pay. From this point forward, your handling of
the transaction is identical to any other eProtect transaction. The eProtect server returns a Registration ID
and your Mobile App (or server) constructs the cnpAPI transaction using that ID.

The steps that occur when a consumer initiates an Apple Pay purchase using your mobile application are
detailed below and shown in Figure 2-3.

1. When the consumer selects the Apple Pay option from your application or website, your
application/site makes use of the Apple PassKit Framework to request payment data from Apple Pay.

2. When Apple Pay receives the call from your application or website and after the consumer approves
the Payment Sheet (using Touch ID), Apple creates a PKPaymentToken using your public key.
Included in the PKPaymentToken is a network (Visa, Mastercard, American Express, or Discover)
payment token and a cryptogram.

3. Apple Pay returns the Apple PKPaymentToken (defined in Apple documentation; please refer to
https://developer.apple.com/documentation/passkit/pkpaymenttoken) to your application.

4. Your native iOS application sends the PKPaymentToken to our secure server via an HTTPS POST
(see Creating a POST Request for an Apple Pay Transaction on page 63) and eProtect returns a
Registration ID.

5. Your native iOS application forwards the transaction data along with the Registration ID to your order
processing server, as it would with any eProtect transaction.

6. Your server constructs and submits an Authorization/Sale transaction to your FIS-Worldpay payment
API using the Registration ID.

7. Using the private key, Worldpay decrypts the PKPaymentToken associated with the Registration ID
and submits the transaction with the appropriate information to the card networks for approval.

orderId (Mirrored back from the request) The merchant-assigned unique value
representing the order in your system.
Type: String

Max Length: 25 characters

reportGroup (Mirrored back from the request) The cnpAPI required attribute that
defines under which merchant sub-group this transaction will be
displayed in eCommerce iQ Reporting and Analytics.

response The three-digit transaction response code returned by Worldpay for this
transaction.

responseTime The date and time (GMT) the transaction was processed.

NOTE: In the FIS-Worldpay payment API, it is not necessary to set the date in the
Authorization/Sale

TABLE 2-7 Parameters Returned in POST Response (Continued)

Parameter Description
© 2022 FIS and/or its affiliates. All rights reserved.

 eProtect Integration Guide V4.19
61

https://developer.apple.com/library/content/documentation/PassKit/Reference/PaymentTokenJSON/PaymentTokenJSON.html
https://developer.apple.com/library/content/documentation/PassKit/Reference/PaymentTokenJSON/PaymentTokenJSON.html

Integration and Testing

62
8. Worldpay sends the Approval/Decline message back to your system. This message is the standard
format for an Authorization or Sale response and includes the Worldpay token.

9. You return the Approval/Decline message to your mobile application.

FIGURE 2-3 Data/Transaction Flow using the Worldpay Mobile API for Apple Pay

NOTE: If you subscribe to both Vault tokenization and Apple Pay, Worldpay will tokenize Apple Pay
token values to ensure a consistent token value is returned. As a result, tokenized value returned in
the response is based off the Apple Pay token, not the original PAN value. Format preserving
components of the Vault token value such as the Last-four and BIN will be from the Apple Pay
token, not the PAN.
© 2022 FIS and/or its affiliates. All rights reserved.

 eProtect Integration Guide V4.19

Integration and Testing
 2.3.2.1 Creating a POST Request for an Apple Pay Transaction

Construct your HTTPS POST as detailed in Creating the POST Request on page 58, using the
components listed in the Table 2-6 as well as those listed in Table 2-8 (all required). See the Sample
Apple Pay POST Request and Sample Apple Pay POST Response below.

var applepay = {};

applepay.data = “”,
applepay.signature = “”;
applepay.version = “”;
applepay.header = {};
applepay.header.applicationData = “”;
applepay.header.ephemeralPublicKey = “”;
applepay.header.publicKeyHash = “”;
applepay.header.transactionId = “”;

Table 2-8 describes these components.

TABLE 2-8 Worldpay Mobile API for Apple Pay HTTPS POST Required Components

Parameter Name Description

applepay.data Payment data dictionary, Base64 encoded as a
string. Encrypted Payment data.

applepay.signature Detached PKCS #7 signature, Base64 encoded as
string. Signature of the payment and header data.

applepay.version Version information about the payment token.

applepay.header.applicationData SHA-256 hash, Base64 encoded as a string. Hash of
the applicationData property of the original
PKPaymentRequest.

applepay.header.ephemeralPublicKey X.509 encoded key bytes, Base64 encoded as a
string. Ephemeral public key bytes.

applepay.header.publicKeyHash SHA-256 hash, Base64 encoded as a string. Hash of
the X.509 encoded public key bytes of the
merchant's certificate.

applepay.header.transactionId Hexademical identifier, as a string. Transaction
identifier, generated on the device.
© 2022 FIS and/or its affiliates. All rights reserved.

 eProtect Integration Guide V4.19
63

Integration and Testing

64
 2.3.2.2 Sample Apple Pay POST Request

The following is an example POST to request a Registration ID for Apple Pay:

curl --verbose -H "Content-Type: application/x-www-form-urlencoded" -H "request.eprotect.
vantivprelive.com" -H "User-Agent:Vantiv/1.0 CFNetwork/459 Darwin/10.0.0.d3" -d"paypageId=a2y4o6m8k
0&reportGroup=*merchant1500&orderId=PValid&id=1234&applepay.data=HT897mACd%2F%2FTpWe10A5y9RmL5UfboT
iDIvjni3zWFtyy8dtv72RJL1bk%2FU4dTDlrq1T1V2l0TSnI%0APLdOnnHBO51bt9Ztj9odDTQ5LD%2F4hMZTQj3lBRvFOtTtjp
9ysBAsydgjEjcCcbnkx7dCqgnwgzuz%0Ay7bX%2B5Fo8a8RKqoprkDPwIMWOC9yWe7MQw%2FboM5NY2QtIcIvzbLFcYUxndYTg0
IXNBHNzsvUOjmw%0AvEnMhXxeCH%2BC4KoC6MEsAGK5rH1T5dSvTZzHF5c12dpsqdI73%2FBk6qEcdlT7gJKVmyDQC%2FNFxJ0X
%0AF993Of6ejQDJq6BZsz8X7kYCyJdI%2FPFJPZp4e3L%2FtCsBDUTJAgFLt2xF8HWaPoW8psILOGCCvJQm%0ATR1m7ODtSChaW
Ob7eYm1BpNiD3wkCH8nmIMrlnt3KP4SeQ%3D%3D&applepay.signature=MIAGCSqGSIb3DQEHAqCAMIACAQExDzANBglghkgB
ZQMEAgEFADCABgkqhkiG9w0BBwEAAKCAMIICvzCCAmWgAwIBAgIIQpCV6UIIb4owCgYIKoZIzj0EAwIwejEuMCwGA1UEAwwlQXB
wbGUgQXBwbGljYXRpb24gSW50ZWdyYXRpb24gQ0EgLSBHMzEmMCQGA1UECwwdQXBwbGUgQ2VydGlmaWNhdGlvbiBBdXRob3JpdH
kxEzARBgNVBAoMCkFwcGxlIEluYy4xCzAJBgNVBAYTAlVTMB4XDTE0MDUwODAxMjMzOVoXDTE5MDUwNzAxMjMzOVowXzElMCMGA
1UEAwwcZWNjLXNtcC1icm9rZXItc2lnbl9VQzQtUFJPRDEUMBIGA1UECwwLaU9TIFN5c3RlbXMxEzARBgNVBAoMCkFwcGxlIElu
Yy4xCzAJBgNVBAYTAlVTMFkwEwYHKoZIzj0CAQYIKoZIzj0DAQcDQgAEwhV37evWx7Ihj2jdcJChIY3HsL1vLCg9hGCV2Ur0pUE
bg0IO2BHzQH6DMx8cVMP36zIg1rrV1O%2F0komJPnwPE6OB7zCB7DBFBggrBgEFBQcBAQQ5MDcwNQYIKwYBBQUHMAGGKWh0dHA6
Ly9vY3NwLmFwcGxlLmNvbS9vY3NwMDQtYXBwbGVhaWNhMzAxMB0GA1UdDgQWBBSUV9tv1XSBhomJdi9%2BV4UH55tYJDAMBgNVH
RMBAf8EAjAAMB8GA1UdIwQYMBaAFCPyScRPk%2BTvJ%2BbE9ihsP6K7%2FS5LMDQGA1UdHwQtMCswKaAnoCWGI2h0dHA6Ly9jcm
wuYXBwbGUuY29tL2FwcGxlYWljYTMuY3JsMA4GA1UdDwEB%2FwQEAwIHgDAPBgkqhkiG92NkBh0EAgUAMAoGCCqGSM49BAMCA0g
AMEUCIQCFGdtAk%2B7wXrBV7jTwzCBLE%2BOcrVL15hjif0reLJiPGgIgXGHYYeXwrn02Zwcl5TT1W8rIqK0QuIvOnO1THCbkhV
owggLuMIICdaADAgECAghJbS%2B%2FOpjalzAKBggqhkjOPQQDAjBnMRswGQYDVQQDDBJBcHBsZSBSb290IENBIC0gRzMxJjAkB
gNVBAsMHUFwcGxlIENlcnRpZmljYXRpb24gQXV0aG9yaXR5MRMwEQYDVQQKDApBcHBsZSBJbmMuMQswCQYDVQQGEwJVUzAeFw0x
NDA1MDYyMzQ2MzBaFw0yOTA1MDYyMzQ2MzBaMHoxLjAsBgNVBAMMJUFwcGxlIEFwcGxpY2F0aW9uIEludGVncmF0aW9uIENBIC0
gRzMxJjAkBgNVBAsMHUFwcGxlIENlcnRpZmljYXRpb24gQXV0aG9yaXR5MRMwEQYDVQQKDApBcHBsZSBJbmMuMQswCQYDVQQGEw
JVUzBZMBMGByqGSM49AgEGCCqGSM49AwEHA0IABPAXEYQZ12SF1RpeJYEHduiAou%2Fee65N4I38S5PhM1bVZls1riLQl3YNIk5
7ugj9dhfOiMt2u2ZwvsjoKYT%2FVEWjgfcwgfQwRgYIKwYBBQUHAQEEOjA4MDYGCCsGAQUFBzABhipodHRwOi8vb2NzcC5hcHBs
ZS5jb20vb2NzcDA0LWFwcGxlcm9vdGNhZzMwHQYDVR0OBBYEFCPyScRPk%2BTvJ%2BbE9ihsP6K7%2FS5LMA8GA1UdEwEB%2FwQ
FMAMBAf8wHwYDVR0jBBgwFoAUu7DeoVgziJqkipnevr3rr9rLJKswNwYDVR0fBDAwLjAsoCqgKIYmaHR0cDovL2NybC5hcHBsZS
5jb20vYXBwbGVyb290Y2FnMy5jcmwwDgYDVR0PAQH%2FBAQDAgEGMBAGCiqGSIb3Y2QGAg4EAgUAMAoGCCqGSM49BAMCA2cAMGQ
CMDrPcoNRFpmxhvs1w1bKYr%2F0F%2B3ZD3VNoo6%2B8ZyBXkK3ifiY95tZn5jVQQ2PnenC%2FgIwMi3VRCGwowV3bF3zODuQZ%
2F0XfCwhbZZPxnJpghJvVPh6fRuZy5sJiSFhBpkPCZIdAAAxggFfMIIBWwIBATCBhjB6MS4wLAYDVQQDDCVBcHBsZSBBcHBsaWN
hdGlvbiBJbnRlZ3JhdGlvbiBDQSAtIEczMSYwJAYDVQQLDB1BcHBsZSBDZXJ0aWZpY2F0aW9uIEF1dGhvcml0eTETMBEGA1UECg
wKQXBwbGUgSW5jLjELMAkGA1UEBhMCVVMCCEKQlelCCG%2BKMA0GCWCGSAFlAwQCAQUAoGkwGAYJKoZIhvcNAQkDMQsGCSqGSIb
3DQEHATAcBgkqhkiG9w0BCQUxDxcNMTQxMDAzMjE1NjQzWjAvBgkqhkiG9w0BCQQxIgQgg8i4X6yRAU7AXS1lamCf02UIQlpUvN
PToXUaamsFUT8wCgYIKoZIzj0EAwIERzBFAiBe17NGTuuk%2BW901k3Oac4Z90PoMhN1qRqnij9KNEb%2FXAIhALELZyDWw0fQM
8t0pXO86gg9xXFz424rEMlJ01TM1VxhAAAAAAAA&applepay.version=EC_v1&applepay.header.applicationData=4964
61ea64b50527d2d792df7c38f301300085dd463e347453ae72debf6f4d14&applepay.header.ephemeralPublicKey=MFk
wEwYHKoZIzj0CAQYIKoZIzj0DAQcDQgAEarp8xOhLX9QliUPS9c54i3cqEfrJD37NG75ieNxncOeFLkjCk%2FBn3jVxHlecRwYq
e%2BAWQxZBtDyewaZcmWz5lg%3D%3D&applepay.header.publicKeyHash=zoV5b2%2BmqnMIxU9avTeqWxc7OW3fnKXFxyhY
0cyRixU%3D&applepay.header.transactionId=23e26bd8741fea9e7a4d78a69f4255b315d39ec14233d6f1b32223d199
9fb99f" https://request.eprotect.vantivprelive.com/eProtect/paypage

NOTE: The following fields from the PKPaymentToken must be URL-encoded:
data, ephemeralPublicKey, publicKeyHash, and signature.

Do not use this URL in a
production environment.
Contact Implementation for the
appropriate production URL.
© 2022 FIS and/or its affiliates. All rights reserved.

 eProtect Integration Guide V4.19

Integration and Testing
 2.3.2.3 Sample Apple Pay POST Response

The response received in the body of the POST response is a JSON string similar to the following:

{"bin":"410000","firstSix":"410000","lastFour":"0001","paypageRegistrationId":"S0ZBUURMTlZkMTgrbW
1IL3BZVFFmaDh0M0hjdDZ5RXcxQzRQUkJRKzdVc3JURXp0N0JBdmhDN05aTllUQU5rY1RCMDhLNXg2clI0cDV3Sk5vQmlPTjY
3V2plbDVac0lqd0FkblYwVTdQWms9","type":"VI","id":"1234","vantivTxnId":"82826626153431509","message
":"Success","orderId":"PValid","reportGroup":"*merchant1500","response":"870","responseTime":"201
5-01-19T18:35:27","expDate":"0718"}

 2.3.3 Using the Worldpay Mobile API for Visa Checkout
The operation of Visa Checkout is simple, but requires either the modification of your existing application
or development of new native applications that include the use of the Visa Checkout SDK and handling of
the encrypted data returned to your application by Visa Checkout. The basic steps that occur when a
consumer initiates an Visa Checkout purchase using your mobile application are:

1. When the consumer selects the Visa Checkout option from your application, your application makes
use of the Visa Checkout SDK to request payment data from Visa Checkout.

2. When Visa Checkout receives the call from your application, Visa creates a Payment Success event
using the Worldpay API key or Encryption key. Included in the Payment Success event is encrypted
PAN data.

3. Visa Checkout returns the Payment Success event (defined in Visa documentation; see
https://developer.visa.com/products/visa_checkout/guides) to your application.

In this scenario, your native application performs an HTTPS POST of the Visa Checkout SDK using the
Worldpay Mobile API for Visa Checkout. From this point forward, your handling of the transaction is
identical to any other eProtect transaction. The eProtect server returns a Registration ID (low-value token)
and your Mobile Application (or server) constructs the transaction using that ID (outlined in the following
steps).

4. Your native mobile application sends the Payment Success event to our secure server via an HTTPS
POST (see HTTPS POST Required Components - Worldpay Mobile API for Visa Checkout),
Worldpay decrypts the Payment Success event associated with the Registration ID and eProtect then
returns a Registration ID along with customer information from the decrypted data.

5. Your native mobile application forwards the transaction data along with the Registration ID to your
order processing server, as it would with any eProtect transaction.

6. Your server constructs/submits a standard Authorization/Sale transaction using the Registration ID.
7. Worldpay submits the transaction with the appropriate information to the card networks for approval.

8. Worldpay sends the Approval/Decline message back to your system. This message is the standard
format for an Authorization or Sale response and includes the Worldpay token.

9. You return the Approval/Decline message to your mobile application.
After you finish making a payment, you update the payment information in Visa Checkout. To update
Visa Checkout from a Thank You page (next page to load after making the payment), you add a
one-pixel image to the page.
© 2022 FIS and/or its affiliates. All rights reserved.

 eProtect Integration Guide V4.19
65

https://developer.visa.com/products/visa_checkout/guides
https://developer.visa.com/products/visa_checkout/guides

Integration and Testing

66
FIGURE 2-4 Data/Transaction Flow using the Worldpay Mobile API for Visa Checkout
© 2022 FIS and/or its affiliates. All rights reserved.

 eProtect Integration Guide V4.19

Integration and Testing
 2.3.3.1 Sending Worldpay the Required Fields

Construct your HTTPS POST as detailed above using the components listed in Table 2-9 below. These
fields take the place of the accountNumber and cvv fields from the Mobile API (encoded as form fields).
See the Sample Apple Pay POST Request and Sample Visa Checkout POST Response below.

 2.3.3.2 Sample Visa Checkout POST Request

The following is an example POST to request a Registration ID for Visa Checkout:

paypageId=VgrJZt5GfhX9DYQq&reportGroup=VIReportGroup&orderId=TC7976_1_viCheckoutPPPost&id=123
45&visaCheckout.apiKey=ENIWGH9WQ4RZMHU9TPKX21EwEluZeS4zp252_mnXTRKuuvUG4&visaCheckout.encrypt
ionKey=5M6PIKT7XURYXV0ZXFMB13RsoW6GlkJCB12FRYGolGw8B3-eM&visaCheckout.encKey=I7Q2OFSekX8PZ239
ZSX8T8AqAZwOtyzTS%2BH%2F9Rj4%2FOXQn2uDTbNIPHJY4KXu5e9UV2Gphi3Mm2DY%2Fb947DaTUO7eD0ijwIUi8wcJQ
Zjddtoe3oC7TLVSqIvtwNb0UjXf&visaCheckout.callid=1111111111111111111&visaCheckout.encPaymentDa
ta=YnIJmecBIamQMxbUTVjNXJbxf%2BGarZSqvC8T%2FWRz1AqG1jGHA3TCbu3V268uNIEDKFX4cbgHF6pxSCJjNPMrUe
Mef3Y3%2Fvd08GgSsucrLS4MLPwj4LBtX7G4mt1HFiij4E0ESMedNxywH%2BJ68Oqu%2BTkN%2FwHIJNfAjg2F7pHx3qD
uisCih%2BPkCAWOAjrHxOS1LKf%2FzkerBfR0U0RYZBuxsD4zWJIUfhSbtrbnmVhD%2BIIZSr%2BT%2F6zvPVtInnND3y
qFf%2Bmy7IymV5RUV9Ta41yVuEc&

TABLE 2-9 HTTPS POST Required Components - Worldpay Mobile API for Visa Checkout

Parameter Name Description

visaCheckout.apiKey The API key used to identify the shared secret used by Visa
Checkout and Worldpay to decrypt the encPaymentData and
encKey fields. You use both a live key and a sandbox key,
which are different from each other.

visaCheckout.encKey Encrypted key used to decrypt encPaymentData. Worldpay
uses its shared secret identified by the apiKey or
encryptionKey to decrypt this key.

visaCheckout.encryptionKey The Encryption key used to identify the shared secret used by
Visa Checkout and Worldpay to decrypt the encPaymentData
and encKey fields. You use both a live key and a sandbox
key, which are different from each other.
When the encryptionKey is not present, Worldpay uses the
apiKey.
Note: The apiKey is a mandatory field and must be present
whether or not the encryptionKey is present.

visaCheckout.encPaymentData Encrypted consumer and payment data that can be used to
process the transaction. Worldpay uses the decrypted encKey
to decrypt this value. The decrypted value is returned in the
eProtect response.

visaCheckout.callid Visa Checkout transaction ID associated with a payment
request.
© 2022 FIS and/or its affiliates. All rights reserved.

 eProtect Integration Guide V4.19
67

Integration and Testing

68
 2.3.3.3 Sample Visa Checkout POST Response

The response received in the body of the POST response is a JSON string similar to the following:

{"paypageRegistrationId":"1479321767965480923","bin":"400552","type":"VI","firstSix":"400552","la
stFour":"4821","visaCheckoutResponse":"{\"userData\":{\"userFirstName\":\"Jonathon\",\"userLastNa
me\":\"Ross\",\"userFullName\":\"Jonathon Ross\",\"userName\":\"jross@
vantiv.com\",\"encUserId\":\"s/XZjc5uAHsIHCrH+NwOkqfIrWmM1oO4lcj3Tkw/3eA\\u003d\",\"userEmail\":\
"jross@vantiv.com\"},\"paymentRequest\":{\"merchantRequestId\":\"Merchant defined
requestID\",\"currencyCode\":\"USD\",\"subtotal\":\"10\",\"shippingHandling\":\"2\",\"tax\":\"2\"
,\"discount\":\"1\",\"giftWrap\":\"2\",\"misc\":\"1\",\"total\":\"16\",\"orderId\":\"Merchant
defined order ID\",\"description\":\"...corp Product\",\"promoCode\":\"Merchant defined promo
code\"},\"paymentInstrument\":{\"id\":\"QexjXZ5cNF/+v2nb50kXCTN2as05wC7G+
gXh8iN/kaY\\u003d\",\"lastFourDigits\":\"4821\",\"binSixDigits\":\"400552\",\"paymentType\":{\"ca
rdBrand\":\"VISA\",\"cardType\":\"CREDIT\"},\"billingAddress\":{\"personName\":\"Jonathon
Ross\",\"firstName\":\"Jonathon\",\"lastName\":\"Ross\",\"line1\":\"900 Chelmsford
Street\",\"line2\":\"Floor 11 co Vantiv eCommerce\",\"city\":\"Lowell\",\"stateProvince
Code\":\"MA\",\"postalCode\":\"01851\",\"countryCode\":\"US\",\"phone\":\"9782756684\",\"default\
":false},\"verificationStatus\":\"VERIFIED\",\"expired\":false,\"cardArts\":{},\"issuerBid\":\"14
\",\"nameOnCard\":\"Jonathon Ross\",\"cardFirstName\":\"Jonathon\",\"card
LastName\":\"Ross\",\"expirationDate\":{\"month\":\"12\",\"year\":\"2020\"}},\"shippingAddress\":
{\"id\":\"lY6VPBAi7ajTAS0XqKizskaC0GuTrYzYOtxiC5URnDY\\u003d\",\"verificationStatus\":\"VERIFIED\
",\"personName\":\"Jonathon Ross\",\"firstName\":\"Jonathon\",\"lastName
\":\"Ross\",\"line1\":\"900 Chelmsford Street\",\"line2\":\"Floor 11 co Vantiv eCommerce\
",\"city\":\"Lowell\",\"stateProvinceCode\":\"MA\",\"postalCode\":\"01851\",\"countryCode\":\"US\
",\"phone\":\"9782756684\",\"default\":false},\"riskData\":{\"advice\":\"UNAVAILABLE\",\"score\":
\"0\",\"avsResponseCode\":\"0\",\"cvvResponseCode\":\"0\",\"ageOfAccount\":\"1\"},\"newUser\":fal
se}","cnpTxnId":"82832924191048159","orderId":"TC7976_1_viCheckoutPPPost","response":"870","respo
nseTime":"2017-06-27T19:53:24","message":"Success","reportGroup":"VIReportGroup","id":"12345"}

 2.3.4 Using the Worldpay Mobile API for Google Pay

This is the recommended and typical method of implementing Google Pay for Mobile Applications on the
FIS-Worldpay platform. The steps that follow, along with Figure 2-5, illustrate the high-level flow of
messages associated with an Google Pay purchase, when utilizing the Worldpay eProtect service.

1. When the consumer clicks the Google Pay button in your application, the action triggers a
PaymentDataRequest to Google. This process assumes you have integrated with Google using
the method that returns the Worldpay low-value token (paypageRegistrationId) from Google
following the Full Wallet request. For more information see the Google Tutorial Select the ‘Vantiv’
Gateway.

Based on the Define supported payment card networks Google process, Google supports passing
back both PAN_ONLY as well as CRYPTOGRAM_3DS values. PAN_ONLY indicates a card-not-present
keyed transaction and CRYPTOGRAM_3DS indicates a wallet transaction.
If you specify both in your Google Pay instantiation, set assuranceDetailsRequired under the
baseCardPaymentMethod, as shown in the following example:

IMPORTANT: Use the same orderId value on all calls (i.e., Google, Register Token,
Authorization, Sale, etc.). By using the same orderId, customers can track their orders when
using a Google-provided app.
© 2022 FIS and/or its affiliates. All rights reserved.

 eProtect Integration Guide V4.19

https://developers.google.com/pay/api/web/guides/tutorial
https://developers.google.com/pay/api/web/guides/tutorial

Integration and Testing
const baseCardPaymentMethod = {
type: 'CARD',
parameters: {

allowedAuthMethods: allowedCardAuthMethods,
allowedCardNetworks: allowedCardNetworks,
"assuranceDetailsRequired": true

}
};

See the Google documentation for more information.

2. Upon confirmation of the order by the consumer, your application initiates a FullWalletRequest to
Google. The cardholder clicks the Google Pay button initialized in step 1, which prompts the
cardholder to choose the card on file stored with Google.

3. After receiving the FullWalletRequest from your application, Google submits the card information
to Worldpay eProtect. The eProtect servers return a low-value token (paypageRegistrationId).

4. Google returns the low-value token (paypageRegistrationId) to your application under the
tokenizationData.token field along with the Full Wallet information.

If you set assuranceDetailsRequired in Step 1, note the Google Pay googleresponse in the
assuranceDetails.cardHolderAuthenticated section:

• A value of true indicates that Google passed CRYPTOGRAM_3DS to FIS-Worldpay.
• A value of false indicates that Google passed PAN_ONLY to FIS-Worldpay.

5. Your servers submit the Auth/Sale transaction to the FIS-Worldpay payment API. Depending on
whether Google processed a PAN_ONLY or CRYPTOGRAM_3DS, ensure that you construct the proper
Auth/Sales transaction based on the cardHolderAuthenticated value returned by Google.

6. Worldpay processes your transaction normally and returns the results along with a high-value token.

NOTE: In the FIS-Worldpay payment API, it is not necessary to set the date in the
Authorization/Sale
© 2022 FIS and/or its affiliates. All rights reserved.

 eProtect Integration Guide V4.19
69

https://developers.google.com/pay/api/web/reference/request-objects#CardParameters

Integration and Testing

70
FIGURE 2-5 High Level Message Flow for Google Pay™ using eProtect

Mobile
App

Merchant
Server eComm

Card
Networks

1

2

3
4

5

6

eProtect
© 2022 FIS and/or its affiliates. All rights reserved.

 eProtect Integration Guide V4.19

Integration and Testing
 2.3.5 Recurring Payments with Apple Pay and Google Pay
When you submit the first transaction in a recurring/installment stream, or when storing credentials for
future purchases, you must set the <processingType> element to either initialRecurring,
initialInstallment, or initialCOF (Card on File), as applicable. With the exception of an American Express
transaction, the XML response message includes the <networkTransactionId> element. You must
retain the value returned for use in future transactions. When you submit the next and all subsequent
transactions in the recurring/installment stream, set the <orderSource> to recurring or installment as
appropriate, and include the networkTransactionId value in the
<originalNetworkTransactionId> element. For a CoF transaction, set the <orderSource> to
ecommerce and the <processingType> element to either merchantInitiatedCOF, or
cardholderInitiatedCOF (Card on File), as applicable.
© 2022 FIS and/or its affiliates. All rights reserved.

 eProtect Integration Guide V4.19
71

Integration and Testing

72
 2.4 Collecting Diagnostic Information

In order to assist Worldpay in determining the cause of failed eProtect transactions (and avoid potential
lost sales), please collect the following diagnostic information when you encounter a failure during the
testing and certification process, and provide it to your eProtect Implementation Consultant or your
Relationship Manager if you are currently in production.

• Error code returned and reason for the failure:

• JavaScript was disabled on the customer’s browser.
• JavaScript could not be loaded.
• JavaScript was loaded properly, but the sendToEprotect call did not return a response, or timed

out (JavaScript API and Mobile API only).

• JavaScript was loaded properly, but the sendToEprotect call returned a response code
indicating an error (JavaScript API and Mobile API only).

• JavaScript was loaded properly, but the call to construct the EprotectIframeClient failed
(iFrame only).

• JavaScript was loaded properly, but the getPaypageRegistrationId call failed (iFrame only).

• The orderId and merchantTxnId for the transaction.
• Where in the process the failure occurred.
• Information about the customer’s browser, including the version.

For further information on methods for collecting diagnostic information, contact your eProtect
Implementation Consultant or FIS-Worldpay Implementation Consultant if you are currently in the testing
and certification process, or your Relationship Manager if you are currently in production.
© 2022 FIS and/or its affiliates. All rights reserved.

 eProtect Integration Guide V4.19

Integration and Testing
 2.5 Transaction Examples When Using cnpAPI

This section describes how to format cnpAPI transactions when using the eProtect feature of the Vault
solution. These standard cnpAPI transactions are submitted by your payment processing system after
your customer clicks the submit button on your checkout page. Your payment processing system sends
the transactions to Worldpay with the <paypageRegistrationId> from the response message, and
the Vault maps the Registration ID to the token and card number, processing the payment as usual.

See cnpAPI Elements for eProtect on page 112 for definitions of the eProtect-related elements used in
these examples.

This section is meant as a supplement to the Worldpay cnpAPI Reference Guide. Refer to the Worldpay
cnpAPI Reference Guide for comprehensive information on all elements used in these examples.

 2.5.1 Transaction Types and Examples
This section contains examples of the following transaction types:

• Authorization Transactions
• Sale Transactions
• Register Token Transactions

• Force Capture Transactions
• Capture Given Auth Transactions

• Credit Transactions

For each type of transaction, only online examples are shown, however batch transactions for all the
above transaction types are also supported when using the eProtect feature. See the Worldpay cnpAPI
Reference Guide for information on forming batch transactions.

NOTE: The PayPage Registration ID is a temporary identifier used to facilitate the mapping of a
token to a card number, and consequently expires within 24 hours of issuance. If you do not submit
an Authorization, Sale, or Register Token transaction containing the <paypageRegistrationId>
within 24 hours, the system returns a response code of 878 - Expired PayPage Registration ID, and
no token is issued.
© 2022 FIS and/or its affiliates. All rights reserved.

 eProtect Integration Guide V4.19
73

Integration and Testing

74
 2.5.2 Authorization Transactions
The Authorization transaction enables you to confirm that a customer has submitted a valid payment
method with their order and has sufficient funds to purchase the goods or services they ordered.

This section describes the format you must use for an Authorization request when using the eProtect
feature, as well as the Authorization Response format.

 2.5.2.1 Authorization Request Structure

You must structure an Authorization request as shown in the following examples when using eProtect.

<authorization id="Authorization Id" reportGroup="UI Report Group"
customerId="Customer Id">
<orderId>Order Id</orderId>
<amount>Authorization Amount</amount>
<orderSource>ecommerce</orderSource>
<billToAddress>
<shipFromPostalCode>
<paypage>
<paypageRegistrationId>Registation ID returned</paypageRegistrationId>
<expDate>Card Expiration Date</expDate>
<cardValidationNum>Card Validation Number</cardValidationNum>

</paypage>
</authorization>

Example: Online Authorization Request

<cnpOnlineRequest version="12.23" xmlns="http://www.vantivcnp.com/schema"
merchantId="100">
<authentication>
<user>User Name</user>
<password>Password</password>

</authentication>
<authorization id="834262" reportGroup="ABC Division" customerId="038945">
<orderId>65347567</orderId>
<amount>40000</amount>
<orderSource>ecommerce</orderSource>
<billToAddress>
<name>John Smith</name>

NOTE: Although the schema defines the <expDate> element as an optional child of <paypage>
element, Worldpay does not store expiration dates. Therefore, you must always submit an expiration
date value with each eProtect cnpAPI transaction.
© 2022 FIS and/or its affiliates. All rights reserved.

 eProtect Integration Guide V4.19

Integration and Testing
<addressLine1>100 Main St</addressLine1>
<city>Boston</city>
<state>MA</state>
<zip>12345</zip>
<email>jsmith@someaddress.com</email>
<phone>555-123-4567</phone>

</billToAddress>
<paypage>
<paypageRegistrationId>cDZJcmd1VjNlYXNaSlRMTGpocVZQY1NNlYE4ZW5UTko4NU

9KK3p1L1p1VzE4ZWVPQVlSUHNITG1JN2I0NzlyTg=</paypageRegistrationId>
<expDate>1012</expDate>
<cardValidationNum>000</cardValidationNum>

</paypage>
</authorization>

</cnpOnlineRequest>

 2.5.2.2 Authorization Response Structure

An Authorization response has the following structure:

<authorizationResponse id="Authorization Id" reportGroup="UI Report Group"
customerId="Customer Id">
<cnpTxnId>Transaction Id</cnpTxnId>
<orderId>Order Id</orderId>
<response>Response Code</response>
<responseTime>Date and Time in GMT</responseTime>
<postDate>Date transaction posted</postDate> (Online Only)
<message>Response Message</message>
<authCode>Approval Code</authCode>
<accountInformation>
<fraudResult>
<tokenResponse>

</authorizationResponse>
© 2022 FIS and/or its affiliates. All rights reserved.

 eProtect Integration Guide V4.19
75

Integration and Testing

76
Example: Online Authorization Response

<cnpOnlineResponse version="12.23" xmlns="http://www.vantivcnp.com/schema"
response="0" message="Valid Format">
<authorizationResponse id="834262" reportGroup="ABC Division"
customerId="038945">
<cnpTxnId>969506</cnpTxnId>
<orderId>65347567</orderId>
<response>000</response>
<responseTime>2009-07-25T15:13:43</responseTime>
<postDate>2009-07-25</postDate>
<message>Approved</message>
<authCode>123457</authCode>
<fraudResult>
<avsResult>11</avsResult>
<cardValidationResult>P</cardValidationResult>

</fraudResult>
<tokenResponse>
<cnpToken>1111000100090005</cnpToken>
<tokenResponseCode>801</tokenResponseCode>
<tokenMessage>Account number was successfully registered</tokenMessage>
<type>VI</type>
<bin>402410</bin>

</tokenResponse>
</authorizationResponse>

</cnpOnlineResponse>

NOTE: The online response format contains a <postDate> element, which indicates the date the
financial transaction will post (specified in YYYY-MM-DD format).
© 2022 FIS and/or its affiliates. All rights reserved.

 eProtect Integration Guide V4.19

Integration and Testing
 2.5.3 Sale Transactions
The Sale transaction enables you to both authorize fund availability and deposit those funds by means of
a single transaction. The Sale transaction is also known as a conditional deposit, because the deposit
takes place only if the authorization succeeds. If the authorization is declined, the deposit will not be
processed.

This section describes the format you must use for a sale request, as well as the format of the Sale
Response.

 2.5.3.1 Sale Request Structure

You must structure a Sale request as shown in the following examples when using eProtect:

<sale id="Authorization Id" reportGroup="UI Report Group" customerId="Customer Id">
<orderId>Order Id</orderId>
<amount>Authorization Amount</amount>
<orderSource>ecommerce</orderSource>
<billToAddress>
<shipFromPostalCode>
<paypage>
<paypageRegistrationId>Registation ID returned</paypageRegistrationId>
<expDate>Card Expiration Date</expDate>
<cardValidationNum>Card Validation Number</cardValidationNum>

</paypage>
</sale>

Example: Online Sale Request

<cnpOnlineRequest version="12.23" xmlns="http://www.vantivcnp.com/schema"
merchantId="100">
<authentication>
<user>User Name</user>
<password>Password</password>

</authentication>
<sale id="834262" reportGroup="ABC Division" customerId="038945">
<orderId>65347567</orderId>
<amount>40000</amount>
<orderSource>ecommerce</orderSource>

NOTE: Although the schema defines the <expDate> element as an optional child of <paypage>
element, Worldpay does not store expiration dates. Therefore, you must always submit an expiration
date value with each eProtect cnpAPI transaction.
© 2022 FIS and/or its affiliates. All rights reserved.

 eProtect Integration Guide V4.19
77

Integration and Testing

78
<billToAddress>
<name>John Smith</name>
<addressLine1>100 Main St</addressLine1>
<city>Boston</city>
<state>MA</state>
<zip>12345</zip>
<email>jsmith@someaddress.com</email>
<phone>555-123-4567</phone>

</billToAddress>
<paypage>
<paypageRegistrationId>cDZJcmd1VjNlYXNaSlRMTGpocVZQY1NNlYE4ZW5UTko4NU

9KK3p1L1p1VzE4ZWVPQVlSUHNITG1JN2I0NzlyTg=</paypageRegistrationId>
<expDate>1012</expDate>
<cardValidationNum>000</cardValidationNum>

</paypage>
</sale>

</cnpOnlineRequest>

 2.5.3.2 Sale Response Structure

A Sale response has the following structure:

<SaleResponse id="Authorization Id" reportGroup="UI Report Group"
customerId="Customer Id">
<cnpTxnId>Transaction Id</cnpTxnId>
<response>Response Code</response>
<orderId>Order Id</orderId>
<responseTime>Date and Time in GMT</responseTime>
<postDate>Date transaction posted</postDate> (Online Only)
<message>Response Message</message>
<authCode>Approval Code</authCode>
<accountInformation>
<fraudResult>
<tokenResponse>

</SaleResponse>
© 2022 FIS and/or its affiliates. All rights reserved.

 eProtect Integration Guide V4.19

Integration and Testing
Example: Online Sale Response

<cnpOnlineResponse version="12.23" xmlns="http://www.vantivcnp.com/schema"
response="0" message="Valid Format">
<saleResponse id="834262" reportGroup="ABC Division" customerId="038945">
<cnpTxnId>969506</cnpTxnId>
<response>000</response>
<orderId>65347567</orderId>
<responseTime>2009-07-25T15:13:43</responseTime>
<postDate>2009-07-25</postDate>
<message>Approved</message>
<authCode>123457</authCode>
<fraudResult>
<avsResult>11</avsResult>
<cardValidationResult>P</cardValidationResult>

</fraudResult>
<tokenResponse>
<cnpToken>1111000100090005</cnpToken>
<tokenResponseCode>801</tokenResponseCode>
<tokenMessage>Account number was successfully registered</tokenMessage>
<type>VI</type>
<bin>402410</bin>

</tokenResponse>
</saleResponse>

</cnpOnlineResponse>

NOTE: The online response format contains a <postDate> element, which indicates the date the
financial transaction will post (specified in YYYY-MM-DD format).
© 2022 FIS and/or its affiliates. All rights reserved.

 eProtect Integration Guide V4.19
79

Integration and Testing

80
 2.5.4 Register Token Transactions
The Register Token transaction enables you to submit a credit card number, or in this case, a PayPage
Registration Id to our system and receive a token in return.

 2.5.4.1 Register Token Request

You must specify the Register Token request as follows. The structure of the request is identical for either
an Online or a Batch submission. The child elements used differ depending upon whether you are
registering a credit card account or a PayPage Registration Id.

When you submit the CVV2/CVC2/CID in a registerTokenRequest, our platform encrypts and stores
the value on a temporary basis (24 hours) for later use in a tokenized Authorization or Sale transaction
submitted without the value. This is done to accommodate merchant systems/workflows where the
security code is available at the time of token registration, but not at the time of the Authorization/Sale. If
for some reason you need to change the value of the security code supplied at the time of the token
registration, use an updateCardValidationNumOnToken transaction. To use the stored value when
submitting an Auth/Sale transaction, set the cardValidationNum value to 000.

For PayPage Registration IDs:

<registerTokenRequest id="Id" reportGroup="UI Report Group">
<orderId>Order Id</orderId>
<paypageRegistrationId>PayPage Registration Id</paypageRegistrationId>

</registerTokenRequest>
For Credit Card Register Token request structures, see the Worldpay eComm cnpAPI Reference Guide.

Example: Online Register Token Request - eProtect
<cnpOnlineRequest version="12.23" xmlns="http://www.vantivcnp.com/schema"
merchantId="100">
<authentication>
<user>userName</user>
<password>password</password>

</authentication>
<registerTokenRequest id="99999" reportGroup="RG1">
<orderId>F12345</orderId>
<paypageRegistrationId>3854058282021647186</paypageRegistrationId>

</registerTokenRequest>
</cnpOnlineRequest>

NOTE: The use of the <cardValidationNum> element in the <registertokenRequest> only
applies when you submit an <accountNumber> element.

NOTE: If you are using OmniTokens, the <paypageRegistrationId> value returned by
eProtect is numeric only; otherwise the value is alphanumeric.
© 2022 FIS and/or its affiliates. All rights reserved.

 eProtect Integration Guide V4.19

Integration and Testing
 2.5.4.2 Register Token Response

There is no structural difference an Online and Batch response; however, some child elements change
depending upon whether the token is for a credit card account, or PayPage registration Id. The response
for the will have one of the following structures.

Register Token response for PayPage Registration Ids (and Credit Cards):

<registerTokenResponse id="99999" reportGroup="RG1">
<cnpTxnId>Transaction ID</cnpTxnId>
<cnpToken>Token</cnpToken>
<bin>BIN</bin>
<type>Method of Payment</type>
<response>Response Code</response>
<responseTime>Response Time</responseTime>
<message>Response Message</message>
<location>Processing Platform Location</location>

</registerTokenResponse>

Example: Online Register Token Response - eProtect
<cnpOnlineResponse version="12.23" xmlns="http://www.vantivcnp.com/schema"
id="123" response="0" message="Valid Format" cnpSessionId="987654321">
<registerTokenResponse id="99999" reportGroup="RG1">
<cnpTxnId>21122700</cnpTxnId>
<cnpToken>1111000100360002</cnpToken>
<bin>400510</bin>
<type>VI</type>
<response>801</response>
<responseTime>2010-10-26T17:21:51</responseTime>
<message>Account number was successfully registered</message>

</registerTokenResponse>
</cnpOnlineResponse>

 2.5.5 Force Capture Transactions
A Force Capture transaction is a Capture transaction used when you do not have a valid Authorization for
the order, but have fulfilled the order and wish to transfer funds. You can use a
<paypageRegistrationID> with a Force Capture transaction.

CAUTION: Merchants must be authorized by Worldpay before submitting transactions of this type.
In some instances, using a Force Capture transaction can lead to chargebacks and fines.
© 2022 FIS and/or its affiliates. All rights reserved.

 eProtect Integration Guide V4.19
81

Integration and Testing

82
 2.5.5.1 Force Capture Request

You must structure a Force Capture request as shown in the following examples when using eProtect.
The structure of the request is identical for either an Online or a Batch submission

<forceCapture id="Id" reportGroup="UI Report Group" customerId="Customer Id">
<orderId>Order Id</orderId>
<amount>Force Capture Amount</amount>
<orderSource>Order Entry Source</orderSource>
<billToAddress>
<paypage>
<paypageRegistrationId>Registation ID returned</paypageRegistrationId>
<expDate>Card Expiration Date</expDate>
<cardValidationNum>Card Validation Number</cardValidationNum>

</paypage>
</forceCapture>

Example: On-Line Force Capture Request
<cnpOnlineRequest version="12.23" xmlns="http://www.vantivcnp.com/schema"
merchantId="100">
<authentication>
<user>User Name</user>
<password>Password</password>

</authentication>
<forceCapture id="834262" reportGroup="ABC Division" customerId="038945">
<orderId>65347567</orderId>
<amount>40000</amount>
<orderSource>ecommerce</orderSource>
<billToAddress>
<name>John Smith</name>
<addressLine1>100 Main St</addressLine1>
<city>Boston</city>
<state>MA</state>
<zip>12345</zip>
<country>USA</country>
<email>jsmith@someaddress.com</email>
<phone>555-123-4567</phone>

</billToAddress>

NOTE: Although the schema defines the <expDate> element as an optional child of <paypage>
element, Worldpay does not store expiration dates. Therefore, you must always submit an expiration
date value with each eProtect cnpAPI transaction.
© 2022 FIS and/or its affiliates. All rights reserved.

 eProtect Integration Guide V4.19

Integration and Testing
<paypage>
<paypageRegistrationId>cDZJcmd1VjNlYXNaSlRMTGpocVZQY1NNlYE4ZW5UTko4NU

9KK3p1L1p1VzE4ZWVPQVlSUHNITG1JN2I0NzlyTg=</paypageRegistrationId>
<expDate>1012</expDate>
<cardValidationNum>712</cardValidationNum>

</paypage>
</forceCapture>

</cnpOnlineRequest>

 2.5.5.2 Force Capture Response

The Force Capture response message is identical for Online and Batch transactions, except Online
includes the <postDate> element and may include a duplicate attribute. The Force Capture response
has the following structure:

<forceCaptureResponse id="Capture Id" reportGroup="UI Report Group"
customerId="Customer Id">
<cnpTxnId>Transaction Id</cnpTxnId>
<response>Response Code</response>
<responseTime>Date and Time in GMT</responseTime>
<postDate>Date of Posting</postDate> (Online Only)
<message>Response Message</message>
<tokenResponse>
<accountUpdater>

</forceCaptureResponse>
© 2022 FIS and/or its affiliates. All rights reserved.

 eProtect Integration Guide V4.19
83

Integration and Testing

84
Example: Force Capture Response
<cnpOnlineResponse version="12.23" xmlns="http://www.vantivcnp.com/schema"
response="0" message="Valid Format">
<forceCaptureResponse id="2" reportGroup="ABC Division"
 customerId="038945">
<cnpTxnId>1100030204</cnpTxnId>
<response>000</response>
<responseTime>2009-07-11T14:48:48</responseTime>
<postDate>2009-07-11</postDate>
<message>Approved</message>
<tokenResponse>
<cnpToken>1111000100090005</cnpToken>
<tokenResponseCode>801</tokenResponseCode>
<tokenMessage>Account number was successfully registered</tokenMessage>
<type>VI</type>
<bin>402410</bin>

</tokenResponse>
</forceCaptureResponse>

</cnpOnlineResponse>

 2.5.6 Capture Given Auth Transactions
You can use a Capture Given Auth transaction with a <paypageRegistrationID> if the <cnpTxnId>
is unknown and the Authorization was processed using COMAAR data (Card Number, Order Id, Merchant
Id, Amount, Approval Code, and (Auth) Response Date).

 2.5.6.1 Capture Given Auth Request

<captureGivenAuth id="Capture Given Auth Id" reportGroup="UI Report Group"
customerId="Customer Id">
<orderId>Order Id</orderId>
<authInformation>
<amount>Authorization Amount</amount>
<orderSource>Order Entry Source</orderSource>
<billToAddress>
<shipToAddress>
<paypage>

NOTE: Although the schema defines the <expDate> element as an optional child of <paypage>
element, Worldpay does not store expiration dates. Therefore, you must always submit an expiration
date value with each eProtect cnpAPI transaction.
© 2022 FIS and/or its affiliates. All rights reserved.

 eProtect Integration Guide V4.19

Integration and Testing
<paypageRegistrationId>Registation ID returned</paypageRegistrationId>
<expDate>Card Expiration Date</expDate>
<cardValidationNum>Card Validation Number</cardValidationNum>

</paypage>
</captureGivenAuth>

Example: Online Capture Given Auth Request
<cnpOnlineRequest version="12.23" xmlns="http://www.vantivcnp.com/schema"
merchantId="100">
<authentication>
<user>User Name</user>
<password>Password</password>

</authentication>
<captureGivenAuth id="834262" reportGroup="ABC Division"
 customerId="038945">
<orderId>65347567</orderId>
<authInformation>
<authDate>2011-06-22</authDate>
<authCode>111111</authCode>

</authInformation>
<amount>40000</amount>
<orderSource>ecommerce</orderSource>
<billToAddress>
<name>John Smith</name>
<addressLine1>100 Main St</addressLine1>
<city>Boston</city>
<state>MA</state>
<zip>12345</zip>
<country>USA</country>
<email>jsmith@someaddress.com</email>
<phone>555-123-4567</phone>

</billToAddress>
<paypage>
<paypageRegistrationId>cDZJcmd1VjNlYXNaSlRMTGpocVZQY1NNlYE4ZW5UTko4NU

9KK3p1L1p1VzE4ZWVPQVlSUHNITG1JN2I0NzlyTg=</paypageRegistrationId>
<expDate>1012</expDate>
<cardValidationNum>000</cardValidationNum>

</paypage>
</captureGivenAuth>

</cnpOnlineRequest>
© 2022 FIS and/or its affiliates. All rights reserved.

 eProtect Integration Guide V4.19
85

Integration and Testing

86
 2.5.6.2 Capture Given Auth Response

A Capture Given Auth response has the following structure. The response message is identical for Online
and Batch transactions except Online includes the <postDate> element and may include a duplicate
attribute.

<captureGivenAuthResponse id="Capture Id" reportGroup="UI Report Group"
customerId="Customer Id">
<cnpTxnId>Transaction Id</cnpTxnId>
<response>Response Code</response>
<responseTime>Date and Time in GMT</responseTime>
<postDate>Date of Posting</postDate> (Online Only)
<message>Response Message</message>
<tokenResponse>

</captureGivenAuthResponse>

Example: Online Capture Given Auth Response
<cnpOnlineResponse version="12.23" xmlns="http://www.vantivcpn.com/schema"
response="0" message="Valid Format">
<captureGivenAuthResponse id="2" reportGroup="ABC Division"
 customerId="038945">
<cnpTxnId>1100030204</cnpTxnId>
<response>000</response>
<responseTime>2011-07-11T14:48:48</responseTime>
<postDate>2011-07-11</postDate>
<message>Approved</message>
<tokenResponse>
<cnpToken>1111000100090005</cnpToken>
<tokenResponseCode>801</tokenResponseCode>
<tokenMessage>Account number was successfully registered</tokenMessage>
<type>VI</type>
<bin>402410</bin>

</tokenResponse>
</captureGivenAuthResponse>

</cnpOnlineResponse>
© 2022 FIS and/or its affiliates. All rights reserved.

 eProtect Integration Guide V4.19

Integration and Testing
 2.5.7 Credit Transactions
The Credit transaction enables you to refund money to a customer. You can submit refunds against any
of the following payment transactions using a <paypageRegistrationId>:

• Capture Given Auth Transactions

• Force Capture Transactions
• Sale Transactions

 2.5.7.1 Credit Request Transaction

You must specify a Credit request for transaction processed by our system as follows. The structure of
the request is identical for either an Online or a Batch submission.

<credit id="Credit Id" reportGroup="UI Report Group" customerId="Customer Id">
<orderId>Order Id</orderId>
<amount>Authorization Amount</amount>
<orderSource>Order Entry Source</orderSource>
<billToAddress>
<paypage>
<paypageRegistrationId>Registation ID returned</paypageRegistrationId>
<expDate>Card Expiration Date</expDate>
<cardValidationNum>Card Validation Number</cardValidationNum>

</paypage>
<customBilling>
<enhancedData>

</credit>

Example: Online Credit Request Transaction
<cnpOnlineRequest version="12.23" xmlns="http://www.vantivcnp.com/schema"
merchantId="100">
<authentication>
<user>User Name</user>
<password>Password</password>

</authentication>
<credit id="834262" reportGroup="ABC Division" customerId="038945">
<orderId>65347567</orderId>
<amount>40000</amount>

NOTE: Although the schema defines the <expDate> element as an optional child of <paypage>
element, the FIS-Worldpay payment API does not store expiration dates. Therefore, you must
always submit an expiration date value with each eProtect cnpAPI transaction.
© 2022 FIS and/or its affiliates. All rights reserved.

 eProtect Integration Guide V4.19
87

Integration and Testing

88
<orderSource>ecommerce</orderSource>
<billToAddress>
<name>John Smith</name>
<addressLine1>100 Main St</addressLine1>
<city>Boston</city>
<state>MA</state>
<zip>12345</zip>
<email>jsmith@someaddress.com</email>
<phone>555-123-4567</phone>

</billToAddress>
<paypage>
<paypageRegistrationId>cDZJcmd1VjNlYXNaSlRMTGpocVZQY1NNlYE4ZW5UTko4NU

9KK3p1L1p1VzE4ZWVPQVlSUHNITG1JN2I0NzlyTg=</paypageRegistrationId>
<expDate>1012</expDate>
<cardValidationNum>000</cardValidationNum>

</paypage>
</credit>

</cnpOnlineRequest>

 2.5.7.2 Credit Response

The Credit response message is identical for Online and Batch transactions except Online includes the
postDate element and may include a duplicate attribute.

<creditResponse id="Credit Id" reportGroup="UI Report Group" customerId="Customer Id">
<cnpTxnId>Transaction Id</cnpTxnId>
<response>Response Code</response>
<responseTime>Date and Time in GMT</responseTime>
<postDate>Date of Posting</postDate> (Online Only)
<message>Response Message</message>
<tokenResponse>

</creditResponse>

Example: Online Credit Response
<cnpOnlineResponse version="12.23" xmlns="http://www.vantivcnp.com/schema"
response="0" message="Valid Format">
<creditResponse customerId="038945" id="5" reportGroup="ABC Division">
<cnpTxnId>1100030204</cnpTxnId>
<response>001</response>
<responseTime>2009-08-11T14:48:48</responseTime>
<postDate>2009-08-11</postDate>
<message>Transaction received</message>
<tokenResponse>
© 2022 FIS and/or its affiliates. All rights reserved.

 eProtect Integration Guide V4.19

Integration and Testing
<cnpToken>1111000100090005</cnpToken>
<tokenResponseCode>801</tokenResponseCode>
<tokenMessage>Account number was successfully registered</tokenMessage>
<type>VI</type>
<bin>402410</bin>

</tokenResponse>
</creditResponse>

</cnpOnlineResponse>
© 2022 FIS and/or its affiliates. All rights reserved.

 eProtect Integration Guide V4.19
89

Integration and Testing

90
 2.6 Testing and Certification

The FIS-Worldpay payment API requires successful certification testing for the eProtect transactions
before you can use them in production. During certification testing, you will work through each required
test scenario with your eProtect Implementation Consultant and Worldpay Conversion Manager. This
section provides the specific data you must use in your eProtect transactions when performing the
required tests. Use of this data allows the validation of your transaction structure/syntax, as well as the
return of a response file containing known data.

The testing process for eProtect includes browser and/or mobile native application interaction, JavaScript
interaction, and transaction requests as well as cnpAPI responses with the Registration ID.

See Certification and Testing Environments on page 11 for information, maintenance windows, and
limitations for the pre-live testing environment.

The eProtect Certification tests the following:

For browser-based checkout pages and mobile native applications:

• Request and receive Registration ID from eProtect.

• Submit Registration ID to the FIS-Worldpay payment API for authorization (or non-financial) request
for OmniToken and response.

For browser-based checkout pages only:

• The timeout period
• The error handler and JavaScript error codes

See the section, eProtect-Specific Response Codes on page 13 for definitions of the response codes.

IMPORTANT: Because browsers differ in their handling of eProtect transactions, Worldpay
recommends testing eProtect on various devices (including smart phones and tablets) and all
browsers, including Internet Explorer/Edge, Google Chrome, Apple Safari, and Mozilla Firefox.
© 2022 FIS and/or its affiliates. All rights reserved.

 eProtect Integration Guide V4.19

Integration and Testing
 2.6.1 Testing eProtect Transactions
To request and receive a Registration ID from eProtect:

1. Verify that your checkout page or mobile native application is coded correctly. See one of the
following sections for more information:

• Integrating Customer Browser JavaScript API Into Your Checkout Page on page 28.
• Integrating iFrame into your Checkout Page on page 42.
• Integrating eProtect Into Your Mobile Application on page 58.

2. Verify that you are using the appropriate URL (see Table 1-2, "eProtect Certification, Testing, and
Production URLs" on page 12) for the testing and certification environment, for example:
https://request.eprotect.vantivprelive.com/eProtect/eProtect-api3.js

3. Submit transactions from your checkout page or mobile application using the Card Numbers and
Card Validation Numbers fromTable 2-10. When performing these tests, you can use any expiration
date and card type.

4. Verify that your results match the Result column in Table 2-10.

NOTE: These URLs should only be used in the testing and certification environment. Do not use
this URL in a production environment. Contact your Implementation Consultant for the appropriate
production URL.

TABLE 2-10 Expected eProtect Test Results

Test
Case Card Number

Card
Validation
Number

Response
Code Result

NOTE: Card Numbers are split into two parts; join Part 1 and Part 2 to obtain actual number to use.

1 Part 1: 51120100

Part 2: 00000003

Any 3-digit 870
(Success)

Registration ID is generated and the card is
scrubbed before the form is submitted.

2 Part 1: 445701000
Part 2: 00000009

Any 3-digit 871 Checkout form displays error message to
cardholder, for example, “Invalid Card
Number - Check and retry (not Mod10).”
Not applicable when the PCI non-sensitive
parameter is set to true.

3 Part 1: 44570100000
Part 2: 0000000006

Any 3-digit 873 Checkout form displays error message to
cardholder, for example, “Invalid Card
Number - Check and retry (too long).”
Not applicable when the PCI non-sensitive
parameter is set to true.
Note: Do not use when testing iFrame.
© 2022 FIS and/or its affiliates. All rights reserved.

 eProtect Integration Guide V4.19
91

Integration and Testing

92
To test the submission of eProtect data using cnpAPI Authorization transactions:

1. Verify that your cnpAPI template is coded correctly for this transaction type (see Authorization
Transactions on page 74).

4 Part 1: 601101

Part 2: 000003

Any 3-digit 872 Checkout form displays error message to
cardholder, for example, “Invalid Card
Number - Check and retry (too short).”

Not applicable when the PCI non-sensitive
parameter is set to true.

5 Part 1: 44570100
Part 2: B00000006

Any 3-digit 874 Checkout form displays error message to
cardholder, for example, “Invalid Card
Number - Check and retry (not a number).”

6 Part 1: 60110100

Part 2: 00000003

Any 3-digit 875 Checkout form displays error message to
cardholder, for example, “We are
experiencing technical difficulties. Please try
again later or call 555-555-1212.”

7 Part 1: 51234567
Part 2: 898010003

Any 3-digit 876 Checkout form displays error message to
cardholder, for example, “Invalid Card
Number - Check and retry (failure from
server).”

8 Part 1: 3750010
Part 2: 00000005

Any 3-digit None
(Timeout
error)

Checkout form displays error message to
cardholder, for example, “We are
experiencing technical difficulties. Please try
again later or call 555-555-1212 (timeout).”

9 Part 1: 44570102

Part 2: 00000007

Any 3-digit 889 Checkout form displays error message to
cardholder, for example, “We are
experiencing technical difficulties. Please try
again later or call 555-555-1212.”

10 Part 1: 51120100
Part 2: 00000003

abc 881 Checkout form displays error message to
cardholder, for example “Invalid Card
Validation Number - Check and retry (not a
number)”.

11 Part 1: 51120100

Part 2: 00000003

12 882 Checkout form displays error message to
cardholder, for example “Invalid Card
Validation Number - Check and retry (too
short)”.

12 Part 1: 51120100
Part 2: 00000003

12345 883 Checkout form displays error message to
cardholder, for example “Invalid Card
Validation Number - Check and retry (too
long)”.
Note: Do not use when testing iFrame.

TABLE 2-10 Expected eProtect Test Results (Continued)

Test
Case Card Number

Card
Validation
Number

Response
Code Result
© 2022 FIS and/or its affiliates. All rights reserved.

 eProtect Integration Guide V4.19

Integration and Testing
2. Submit three Authorization transactions using the eProtect data from Table 2-10.
3. Verify that your authorizationResponse values match the Response Code column.

To test the submission of the Registration ID to the FIS-Worldpay payment API for authorization, or a
non-financial request for an OmniToken and the response:

1. Verify that your applicable message specification template is coded correctly for this transaction type.
2. Submit transactions using the eProtect Registration ID.

Verify that your response values match the expected results provided by your Worldpay Conversion
Manager or eProtect Implementation Consultant.

NOTE: If you are using OMNI tokens, the FIS-Worldpay payment API can only determine that the
card can not be found and will not be able to determine the card type. This may return a response of
822 -Token not found or 330 - Invalid Payment Type.
© 2022 FIS and/or its affiliates. All rights reserved.

 eProtect Integration Guide V4.19
93

Integration and Testing

94

© 2022 FIS and/or its affiliates. All rights reserved.

 eProtect Integration Guide V4.19

© 2022 FIS and/or its affiliates. All rights reserved.

 eProtect Integration Guide V4.19
A

Code Samples and Other Information

This appendix provides code examples and reference material related to integrating the eProtect™
Solution. The following sections are included:

• HTML Checkout Page Examples
• Information Sent to Order Processing Systems

• cnpAPI Elements for eProtect

95

Code Samples and Other Information

96
 A.1 HTML Checkout Page Examples

This section provides three HTML checkout page examples:

• HTML Example for Non-eProtect Checkout Page
• HTML Example for JavaScript API-Integrated Checkout Page
• HTML Example for Version 3 Hosted iFrame-Integrated Checkout Page

• HTML Example for Version 4 Hosted iFrame-Integrated Checkout Page

 A.1.1 HTML Example for Non-eProtect Checkout Page
For comparison purposes, the following HTML sample is for a simple check-out page that is not
integrated with eProtect. The check-out form requests the cardholder's name, CVV code, credit card
account number, and expiration date.

<HTML>
<head>
<title>Non-PayPage Merchant Checkout</title>

</head>
<BODY>
<h2>Checkout Form</h2>
<form method=post id="fCheckout" name="fCheckout"
action="/merchant101/Merchant101CheckoutServlet">
<table>
<tr><td>First Name</td><td><input type="text" id="fName" name="fName" size="20">

</td></tr>
<tr><td>Last Name</td><td><input type="text" id="lName" name="lName" size="20">

</td></tr>
<tr><td>Credit Card</td><td><input type="text" id="ccNum" name="ccNum" size="20">

</td></tr>
<tr><td>CVV/td><td><input type="text" id="cvv" name="cvv" size="5"> </td></tr>
<tr><td>Exp Date</td><td><input type="text" id="expDate" name="expDate"

size="5"></td></tr>
<tr><td> </td><td></tr>
<tr><td></td><td align="right"><input type="submit"
value="Check out" id="submitId"/></td></tr>

</table>
</form>

</BODY>
</HTML>

NOTE: This section does not apply to eProtect solutions in a mobile application.
© 2022 FIS and/or its affiliates. All rights reserved.

 eProtect Integration Guide V4.19

Code Samples and Other Information
 A.1.2 HTML Example for JavaScript API-Integrated Checkout Page
The HTML code below is an example of a simple checkout page integrated with the JavaScript Customer
Browser eProtect solution.

<HTML>
<head>
<title>eProtect Merchant Simple Checkout</title>
<script src="https://request.eprotect.vantivprelive.com/eProtect/eProtect-api3.js"
type="text/javascript"></script>
<script>
$(document).ready(
function(){
function setEprotectResponseFields(response) {
document.getElementById('response$code').value = response.response;
document.getElementById('response$message').value = response.message;
document.getElementById('response$responseTime').value = response.responseTime;
document.getElementById('response$vantivTxnId').value = response.vantivTxnId;
document.getElementById('response$type').value = response.type;
document.getElementById('response$accountRangeId').value = response.accountRangeId;
document.getElementById('response$firstSix').value = response.firstSix;
document.getElementById('response$lastFour').value = response.lastFour;

}
function submitAfterEprotect (response) {
setEprotectResponseFields(response);
document.forms['fCheckout'].submit();

}
function timeoutOnEprotect () {
alert("We are experiencing technical difficulties. Please try again later or call

555-555-1212 (timeout)");
}

function onErrorAfterEprotect (response) {
setEprotectResponseFields(response);
if(response.response == '871') {
alert("Invalid card number. Check and retry. (Not Mod10)");

}
else if(response.response == '872') {
alert("Invalid card number. Check and retry. (Too short)");

}
else if(response.response == '873') {
alert("Invalid card number. Check and retry. (Too long)");

}
else if(response.response == '874') {
alert("Invalid card number. Check and retry. (Not a number)");

}
else if(response.response == '875') {
alert("We are experiencing technical difficulties. Please try again later or call

555-555-1212");
}
else if(response.response == '876') {
alert("Invalid card number. Check and retry. (Failure from Server)");

}
else if(response.response == '881') {
alert("Invalid card validation code. Check and retry. (Not a number)");

}

NOTE: The URL in this example (in red) should only be used in the certification and testing
environment. Before using your checkout page with eProtect in a production environment, replace
the certification URL with the production URL (contact your eProtect Implementation Consultant for
the appropriate production URL).

Do not use this URL in a
production environment.
Contact Implementation for the
appropriate production URL.
© 2022 FIS and/or its affiliates. All rights reserved.

 eProtect Integration Guide V4.19
97

Code Samples and Other Information

98

ct
else if(response.response == '882') {
alert("Invalid card validation code. Check and retry. (Too short)");

}
else if(response.response == '883') {
alert("Invalid card validation code. Check and retry. (Too long)");

}
else if(response.response == '889') {
alert("We are experiencing technical difficulties. Please try again later or call

555-555-1212");
}
return false;

}
var formFields = {
"accountNum" :document.getElementById('ccNum'),
"cvv" :document.getElementById('cvvNum'),

"paypageRegistrationId":document.getElementById('response$paypageRegistrationId'),
"bin" :document.getElementById('response$bin')

};
$("#submitId").click(
function(){
// clear test fields
setEprotectResponseFields({"response":"", "message":""});

var eProtectRequest = {
"paypageId" : document.getElementById("request$paypageId").value,
"reportGroup" : document.getElementById("request$reportGroup").value,
"orderId" : document.getElementById("request$orderId").value,
"id" : document.getElementById("request$merchantTxnId").value,
"url" : "https://request.eprotect.vantivprelive.com"
"minPanLength": 16,
};

new eProtect().sendToEprotect(eProtectRequest, formFields, submitAfterEprotect,
onErrorAfterEprotect, timeoutOnEprotect, 15000);

return false;
}

);
}

);
</script>

</head>
<BODY>
<h2>Checkout Form</h2>
<form method=post id="fCheckout" name="fCheckout"

action="/merchant101/Merchant101CheckoutServlet">
<input type="hidden" id="request$paypageId" name="request$paypageId"

value="a2y4o6m8k0"/>
<input type="hidden" id="request$merchantTxnId" name="request$merchantTxnId" value="987012"/>
<input type="hidden" id="request$orderId" name="request$orderId" value="order_123"/>
<input type="hidden" id="request$reportGroup" name="request$reportGroup"

value="*merchant1500"/>

<table>
<tr><td>First Name</td><td><input type="text" id="fName" name="fName" size="20"></td></tr>
<tr><td>Last Name</td><td><input type="text" id="lName" name="lName" size="20"></td></tr>
<tr><td>Credit Card</td><td><input type="text" id="ccNum" name="ccNum" size="20"></td></tr>
<tr><td>CVV</td><td><input type="text" id="cvvnum" name="cvvnum" size="5"></td></tr>
<tr><td>Exp Date</td><td><input type="text" id="expDate" name="expDate" size="5"></td></tr>
<tr><td> </td><td></tr>
<tr><td></td><td align="right">
<script>
document.write('<button type="button" id="submitId" onclick="callEprotect()">Check out

with eProtect</button>');
</script>
<noscript>

Do not use this URL
in a production
environment. Conta
Implementation for
the appropriate
production URL.
© 2022 FIS and/or its affiliates. All rights reserved.

 eProtect Integration Guide V4.19

Code Samples and Other Information
<button type="button" id="submitId">Enable JavaScript or call us at 555-555-1212</button>
</noscript>
</td></tr>

</table>
<input type="hidden" id="response$paypageRegistrationId"

name="response$paypageRegistrationId" readOnly="true" value=""/>
<input type="hidden" id="response$bin" name="response$bin" readOnly="true"/>
<input type="hidden" id="response$code" name="response$code" readOnly="true"/>
<input type="hidden" id="response$message" name="response$message" readOnly="true"/>
<input type="hidden" id="response$responseTime" name="response$responseTime"

readOnly="true"/>
<input type="hidden" id="response$type" name="response$type" readOnly="true"/>
<input type="hidden" id="response$vantivTxnId" name="response$vantivTxnId" readOnly="true"/>
<input type="hidden" id="response$firstSix" name="response$firstSix" readOnly="true"/>
<input type="hidden" id="response$lastFour" name="response$lastFour" readOnly="true"/>
<input type="hidden" id="response$accountRangeId" name="response$accountRangeId"

readOnly="true"/>
</form>

</BODY>
<script>
/* This is an example of how to handle being unable to download the eProtect-api3 */
function callEprotect() {

if(typeof new eProtect() != 'object') {
alert("We are experiencing technical difficulties. Please try again later or call

555-555-1212 (API unavailable)");
}

}
</script>
</HTML>
© 2022 FIS and/or its affiliates. All rights reserved.

 eProtect Integration Guide V4.19
99

Code Samples and Other Information

100
 A.1.3 HTML Example for Version 3 Hosted iFrame-Integrated Checkout
Page

The HTML code below is an example of a simple checkout page integrated with Version 3 of the iFrame
API solution.

<HTML>
<head>

<title>Merchant1 checkout</title>
<style>

body {
font-size:10pt;

}
.checkout {

background-color:lightgreen;
width: 50%;

}
.testFieldTable {

background-color:lightgrey;
}
#submitId {

font-weight:bold;
font-size:12pt;

}
form#fCheckout {
}

</style>

<script src="https://request.eprotect.vantivprelive.com/eProtect/js/
eProtect-iframe-client3.min.js"></script>
</head>
<body>

<div class="checkout">
<h2>Checkout Form</h2>
<form method=post id="fCheckout" name="fCheckout" onsubmit="return false;">

<table>
<tr><td colspan="2">
<div id="eProtectiframe">
</div>
</td></tr>
<tr><td>Paypage Registration ID</td><td><input type="text"

id="paypageRegistrationId" name="paypageRegistrationId" readOnly="true"/> <--Hidden</td></tr>
<tr><td>Bin</td><td><input type="text" id="bin" name="bin" readOnly="true"/>
<--Hidden</td></tr>
<tr><td></td><td align="right"><button type="submit" id="submitId">Check

out</button></td></tr>
</table>

</form>
</div>

<h3>Test Input Fields</h3>
<table class="testFieldTable">

<tr>
<td>Paypage ID</td><td><input type="text" id="request$paypageId"

NOTE: The URL in this example (in red) should only be used in the certification and testing
environment. Before using your checkout page with eProtect in a production environment, replace
the certification URL with the production URL (contact your Implementation Consultant for the
appropriate production URL).

Do not use this URL in a
production environment.
Contact Implementation for
the appropriate production
URL.
© 2022 FIS and/or its affiliates. All rights reserved.

 eProtect Integration Guide V4.19

Code Samples and Other Information
name="request$paypageId" value="a2y4o6m8k0" disabled/></td>
<td>Merchant Txn ID</td><td><input type="text" id="request$merchantTxnId"

name="request$merchantTxnId" value="987012"/></td>
</tr>
<tr>

<td>Order ID</td><td><input type="text" id="request$orderId" name="request$orderId"
value="order_123"/></td>

<td>Report Group</td><td><input type="text" id="request$reportGroup"
name="request$reportGroup" value="*merchant1500" disabled/></td>

</tr>
<tr>

<td>JS Timeout</td><td><input type="text" id="request$timeout"
name="request$timeout" value="15000" disabled/></td>

</tr>
</table>

<h3>Test Output Fields</h3>
<table class="testFieldTable">

<tr>
<td>Response Code</td><td><input type="text" id="response$code" name="response$code"

readOnly="true"/></td>
<td>ResponseTime</td><td><input type="text" id="response$responseTime"

name="response$responseTime" readOnly="true"/></td>
</tr>
<tr>

<td>Response Message</td><td colspan="3"><input type="text" id="response$message"
name="response$message" readOnly="true" size="100"/></td>

</tr>
<tr><td> </td><td></tr>
<tr>

<td>Vantiv Txn ID</td><td><input type="text" id="response$vantivTxnId"
name="response$vantivTxnId" readOnly="true"/></td>

<td>Merchant Txn ID</td><td><input type="text" id="response$merchantTxnId"
name="response$merchantTxnId" readOnly="true"/></td>

</tr>
<tr>

<td>Order ID</td><td><input type="text" id="response$orderId" name="response$orderId"
readOnly="true"/></td>

<td>Report Group</td><td><input type="text" id="response$reportGroup"
name="response$reportGroup" readOnly="true"/></td>

</tr>
<tr><td>Type</td><td><input type="text" id="response$type" name="response$type"

readOnly="true"/></td></tr>
<tr>

<td>Expiration Month</td><td><input type="text" id="response$expMonth"
name="response$expMonth" readOnly="true"/></td>

<td>Expiration Year</td><td><input type="text" id="response$expYear"
name="response$expYear" readOnly="true"/></td>

</tr>
<tr><td> </td><td></tr>
<tr>

<td>First Six</td><td><input type="text"
id="response$firstSix"name="response$firstSix" readOnly="true"/></td>

<td>Last Four</td><td><input type="text" id="response$lastFour"name="response$lastFour"
readOnly="true"/></td>

</tr>
<tr><td>Timeout Message</td><td><input type="text" id="timeoutMessage"

name="timeoutMessage" readOnly="true"/></td></tr>
<tr><td>Expected Results</td>

<td colspan="3">
<textarea id="expectedResults" name="expectedResults" rows="5" cols="100"

readOnly="true">
CC Num - Token Generated (with simulator)
410000000000001 - 1111222233330001
5123456789012007 - 1112333344442007
© 2022 FIS and/or its affiliates. All rights reserved.

 eProtect Integration Guide V4.19
101

Code Samples and Other Information

102
378310203312332 - 111344445552332
6011000990190005 - 1114555566660005

</textarea></td>
</tr>
<tr>

<td>Encrypted Card</td>
<td colspan="3"><textarea id="base64enc" name="base64enc" rows="5" cols="100"

readOnly="true"></textarea></td>
</tr>

</table>
<script>

function ready(callback) {
// in case the document is already rendered
if (document.readyState != 'loading') callback();
// modern browsers
else if (document.addEventListener) document.addEventListener('DOMContentLoaded', callback);
// IE <= 8 for browser's not supporting addEventListener property
else document.attachEvent('onreadystatechange', function() {

if (document.readyState == 'complete') callback();
});

}
ready(function() {

var startTime;
var eProtectiframeClientCallback = function(response) {

if (response.timeout) {
var elapsedTime = new Date().getTime() - startTime;
document.getElementById('timeoutMessage').value = 'Timed out after ' +

elapsedTime + 'ms';// handle timeout
}
else {

document.getElementById('response$code').value = response.response;
document.getElementById('response$message').value = response.message;
document.getElementById('response$responseTime').value = response.responseTime;
document.getElementById('response$reportGroup').value = response.reportGroup;
document.getElementById('response$merchantTxnId').value = response.id;
document.getElementById('response$orderId').value = response.orderId;
document.getElementById('response$vantivTxnId').value = response.vantivTxnId;
document.getElementById('response$type').value = response.type;
document.getElementById('response$accountRangeId').value =

response.accountRangeId;
document.getElementById('response$lastFour').value = response.lastFour;
document.getElementById('response$firstSix').value = response.firstSix;
document.getElementById('paypageRegistrationId').value =

response.paypageRegistrationId;
document.getElementById('bin').value = response.bin;
document.getElementById('response$expMonth').value = response.expMonth;
document.getElementById('response$expYear').value = response.expYear;

}
};

var configure = {
"paypageId":document.getElementById("request$paypageId").value,
"style":"test",
"reportGroup":document.getElementById("request$reportGroup").value,
"timeout":document.getElementById("request$timeout").value,
"div": "eProtectiframe",
"callback": eProtectiframeClientCallback,
"maskAfterSuccessValue": ‘Z’,
"checkoutIdMode": true,
"showCvv": true,
"months": {

"1":"January",
© 2022 FIS and/or its affiliates. All rights reserved.

 eProtect Integration Guide V4.19

Code Samples and Other Information
"2":"February",
"3":"March",
"4":"April",
"5":"May",
"6":"June",
"7":"July",
"8":"August",
"9":"September",
"10":"October",
"11":"November",
"12":"December"

},
"numYears": 8,
"tooltipText": "A CVV is the 3 digit code on the back of your Visa, Mastercard and Discover or a 4 digit

code on the front of your American Express",
"tabIndex": {

"cvv":1,
"accountNumber":2,
"expMonth":3,
"expYear":4

},
"placeholderText": {

"cvv":"CVV",
"accountNumber":"Account Number",
"pin":"PIN Placeholder"

},
"inputsEmptyCallback": inputsEmptyCallback,
"enhancedUxFeatures" : {

"inlineFieldValidations": true,
"expDateValidation": false,
“enhancedUxVersion”: 2
}

 "minPanLength": 16,
"iFrameTitle":"My Custom Title",
"label" : {
 "accountNumber":"Account Number",
 "expDate" : "Exp Date",

"cvv" : "CVV",
 "pin":"Pin"
 },

};
if(typeof EprotectIframeClient === 'undefined') {

//This means we couldn't download the eprotect-iframe-client javascript library
alert("Couldn't download eprotect-iframe-client3.min javascript");

}
var eProtectiframeClient = new EprotectIframeClient(configure);
function checkPayframeLoaded(){

if(iframeIsReady===true){
//code changes

}
 };

checkPayframeLoaded();

eProtectiframeClient.autoAdjustHeight();
document.getElementById("fCheckout").onsubmit = function(){

var message = {
"id":document.getElementById("request$merchantTxnId").value,
"orderId":document.getElementById("request$orderId").value,

};
startTime = new Date().getTime();
eProtectiframeClient.getPaypageRegistrationId(message);
return false;
© 2022 FIS and/or its affiliates. All rights reserved.

 eProtect Integration Guide V4.19
103

Code Samples and Other Information

104
};

window.onmessage = function(event) {
if(event.data === "checkoutWithEnter") {

//Captures Enter even from iFrame
var message = {

"id": document.getElementById("request$merchantTxnId").value,
"orderId": document.getElementById("request$orderId").value

};
startTime = new Date().getTime();
payframeClient.getCheckoutPin(message);
return false;

}
};

});

</script>
</body>
</HTML>

© 2022 FIS and/or its affiliates. All rights reserved.

 eProtect Integration Guide V4.19

Code Samples and Other Information
 A.1.4 HTML Example for Version 4 Hosted iFrame-Integrated Checkout
Page

The HTML code below is an example of a simple checkout page integrated with Version 4 of the iFrame
API solution.

<HTML>
head>

<title>PAN LVT generator</title>
<style>

body {
font-size:10pt;

}
.checkout {

background-color:rgb(255,255,255);
width: 50%;

}
.testFieldTable {

background-color:lightgrey;
}
#submitId {

font-weight:bold;
font-size:12pt;

}
form#fCheckout {
}
iframe {

height: 50vh;
}

</style>

 <script src="https://request.eprotect.vantivprelive.com/eProtect/js/eProtect-iframe-
client4.min.js">

</script>
</head>
<BODY>
<div class="checkout">

<h2>Test PAN LVT generator</h2>
<form method=post id="fCheckout" name="fCheckout" onsubmit="return false;">

<table id="tCheckout">
<tr><td colspan="2">

<div id="payframe">
</div>

</td></tr>
<tr><td colspan="2">***Everything below is Debug information***</td></tr>
<tr><td>Paypage Registration ID</td><td><input type="text" id="paypageRegistrationId"

name="paypageRegistrationId" readOnly="true"/> <--Hidden</td></tr>
<tr><td>Bin</td><td><input type="text" id="bin" name="bin" readOnly="true"/> <--Hidden</td></tr>
<tr><td></td><td align="right"><input type="submit" id="submitId"></td></tr>

</table>
</form>

</div>

<h3>Test Input Fields</h3>

NOTE: The URL in this example (in red) should only be used in the certification and testing
environment. Before using your checkout page with eProtect in a production environment, replace
the certification URL with the production URL (contact your Implementation Consultant for the
appropriate production URL).

Do not use this URL in a
production environment.
Contact Implementation for
the appropriate production
URL.
© 2022 FIS and/or its affiliates. All rights reserved.

 eProtect Integration Guide V4.19
105

Code Samples and Other Information

106
<table class="testFieldTable">
<tr>

<td>Paypage ID</td><td><input type="text" id="request$paypageId" name="request$paypageId"
value="a2y4o6m8k0" disabled/></td>

<td>Style</td><td><input type="text" id="request$style" name="request$style" value="client4"
disabled/></td>

</tr>
<tr>

<td>Order ID</td><td><input type="text" id="request$orderId" name="request$orderId"
value="order_123"/></td>

<td>Merchant Txn ID</td><td><input type="text" id="request$merchantTxnId"
name="request$merchantTxnId" value="987012"/></td>

</tr>
<tr>

<td>JS Timeout</td><td><input type="text" id="request$timeout" name="request$timeout"
value="5000" /></td>

<td>Report Group</td><td><input type="text" id="request$reportGroup" name="request$reportGroup"
value="Cert30 Merchant Rollup**" disabled/></td>

</tr>
</table>
<h3>Test Output Fields</h3>
<table class="testFieldTable">

<tr>
<td>Response Code</td><td><input type="text" id="response$code" name="response$code"

readOnly="true"/></td>
<td>ResponseTime</td><td><input type="text" id="response$responseTime"

name="response$responseTime" readOnly="true"/></td>
</tr>
<tr>

<td>Response Message</td><td colspan="3"><input type="text" id="response$message"
name="response$message" readOnly="true" size="100"/></td>

</tr>
<tr><td> </td><td></tr>
<tr>

<td>Vantiv Txn ID</td><td><input type="text" id="response$litleTxnId" name="response$litleTxnId"
readOnly="true"/></td>

<td>Merchant Txn ID</td><td><input type="text" id="response$merchantTxnId"
name="response$merchantTxnId" readOnly="true"/></td>

</tr>
<tr>

<td>Order ID</td><td><input type="text" id="response$orderId" name="response$orderId"
readOnly="true"/></td>

<td>Report Group</td><td><input type="text" id="response$reportGroup"
name="response$reportGroup" readOnly="true"/></td>

</tr>
<tr><td>Type</td><td><input type="text" id="response$type" name="response$type"

readOnly="true"/></td></tr>
<tr>

<td>Expiration Month</td><td><input type="text" id="response$expMonth" name="response$expMonth"
readOnly="true"/></td>

<td>Expiration Year</td><td><input type="text" id="response$expYear" name="response$expYear"
readOnly="true"/></td>

</tr>
<tr><td> </td><td></tr>

<tr>

<td>First Six</td><td><input type="text" id="response$firstSix" name="response$firstSix"
readOnly="true"/></td>

<td>Last Four</td><td><input type="text" id="response$lastFour" name="response$lastFour"
readOnly="true"/></td>

</tr>

 <tr><td>Timeout Message</td><td><input type="text" id="timeoutMessage" name="timeoutMessage"
readOnly="true"/></td></tr>
© 2022 FIS and/or its affiliates. All rights reserved.

 eProtect Integration Guide V4.19

Code Samples and Other Information
<tr><td>Expected Results</td>
<td colspan="3">

<textarea id="expectedResults" name="expectedResults" rows="5" cols="100" readOnly="true">
CC Num - Token Generated (with simulator)
4100000000000001 - 1111222233330001
5123456789012007 - 1112333344442007
378310203312332 - 111344445552332
6011000990190005 - 1114555566660005

</textarea></td>
</tr>
<tr>

<td>Encrypted Card</td>
<td colspan="3"><textarea id="base64enc" name="base64enc" rows="5" cols="100"

readOnly="true"></textarea></td>
</tr>

</table>
<script>

document.addEventListener("DOMContentLoaded", function() {
var startTime;
var payframeClientCallback = function (response) {

if (response.timeout) {
var elapsedTime = new Date().getTime() - startTime;
document.getElementById('timeoutMessage').value = 'Timed out after ' + elapsedTime + 'ms';//

handle timeout
} else {

document.getElementById('response$code').value = response.response;
document.getElementById('response$message').value = response.message;
document.getElementById('response$responseTime').value = response.responseTime;
document.getElementById('response$reportGroup').value = response.reportGroup;
document.getElementById('response$merchantTxnId').value = response.id;
document.getElementById('response$orderId').value = response.orderId;
document.getElementById('response$litleTxnId').value = response.litleTxnId;
document.getElementById('response$type').value = response.type;
document.getElementById('response$lastFour').value = response.lastFour;
document.getElementById('response$firstSix').value = response.firstSix;
document.getElementById('paypageRegistrationId').value = response.paypageRegistrationId;
document.getElementById('bin').value = response.bin;
document.getElementById('response$expMonth').value = response.expMonth;
document.getElementById('response$expYear').value = response.expYear;

}
};

function inputsEmptyCallback(res) {
console.log("inputsEmptyCallback: message received");
console.log(res);
var isEmpty = res.allInputsEmpty;
if (isEmpty) {

console.log("Card input fields empty");
$("<p>Inputs are Empty</p>").insertAfter(".checkout");
return true;

} else {
console.log("Card inputs not empty");
$("<p>Inputs are not Empty</p>").insertAfter(".checkout");
return false;

}
}

var configure = {
"paypageId": document.getElementById("request$paypageId").value,
"style": document.getElementById("request$style").value,
"reportGroup": document.getElementById("request$reportGroup").value,
"timeout": document.getElementById("request$timeout").value,
© 2022 FIS and/or its affiliates. All rights reserved.

 eProtect Integration Guide V4.19
107

Code Samples and Other Information

108
"div": "payframe",
"callback": payframeClientCallback,
"showCvv": true,
"months": {

"1":"January",
"2":"February",
"3":"March",
"4":"April",
"5":"May",
"6":"June",
"7":"July",
"8":"August",
"9":"September",
"10":"October",
"11":"November",
"12":"December"

},
"numYears": 8,
"htmlTimeout": document.getElementById("request$timeout").value,

"tabIndex": {
"accountNumber": 1,
"expMonth": 2,
"expYear": 3,
"cvv": 4

},
"inputsEmptyCallback": inputsEmptyCallback,
"clearCvvMaskOnReturn": true,
"enhancedUxFeatures": {

"inlineFieldValidations": true,
"expDateValidation": true

},
"customErrorMessages": {

"872": "Not enough digits in card num"
}

};

var payframeClient = new EprotectIframeClient(configure);
//payframeClient.autoAdjustHeight();
document.getElementById("fCheckout").onsubmit = function(){

var message = {
"id":document.getElementById("request$merchantTxnId").value,
"orderId":document.getElementById("request$orderId").value,
"pciNonSensitive" : true

};
startTime = new Date().getTime();
payframeClient.getPaypageRegistrationId(message);
return false;

};
window.onmessage = function(event) {

if(event.data === "checkoutWithEnter") {
//Captures Enter even from iFrame

var message = {
"id": document.getElementById("request$merchantTxnId").value,
"orderId": document.getElementById("request$orderId").value

};
startTime = new Date().getTime();
payframeClient.getCheckoutPin(message);
return false;

}
};

});
© 2022 FIS and/or its affiliates. All rights reserved.

 eProtect Integration Guide V4.19

Code Samples and Other Information
</script>
</BODY>
</HTML>
© 2022 FIS and/or its affiliates. All rights reserved.

 eProtect Integration Guide V4.19
109

Code Samples and Other Information

110
 A.2 Information Sent to Order Processing Systems

This section describes the information sent to your order processing system, with and without integrating
the eProtect solution.

 A.2.1 Information Sent Without Integrating eProtect
If you have already integrated the Vault solution, an cnpAPI authorization is submitted with the sensitive
card data after your customer completes the checkout form, and a token is stored in its place. The
following is an example of the information sent to your order handling system:

cvv - 123
expDate - 1210
fName - Joe
ccNum - <account number here>
lName - Buyer

 A.2.2 Information Sent with Browser-Based eProtect Integration
When you integrate the eProtect solution, your checkout page stops a transaction when a failure or
timeout occurs, thereby not exposing your order processing system to sensitive card data. The success
callback stores the response in the hidden form response fields, scrubs the card number, and submits the
form. The timeout callback stops the transaction, and the failure callback stops the transaction for
non-user errors. In timeout and failure scenarios, nothing is sent to your order handling system.

The following is an example of the information sent to your order handling system on a successful
transaction:

cvv - 000
expDate - 1210
fName - Joe
ccNum - xxxxxxxxxxxx0001
lName - Buyer
request$paypageId - a2y4o6m8k0
request$merchantTxnId - 987012
request$orderId - order_123
request$reportGroup - *merchant1500
response$paypageRegistrationId - 1111222233330001
response$bin - 410000
response$code - 870
response$message - Success
response$responseTime - 2010-12-21T12:45:15Z
response$type - VI
response$vantivTxnId - 21200000051806

response$firstSix - 410000
response$lastFour - 0001
response$accountRangeId - 1234567890123456789
© 2022 FIS and/or its affiliates. All rights reserved.

 eProtect Integration Guide V4.19

Code Samples and Other Information
 A.2.3 Information Sent with Mobile API-Based Application Integration
The following is an example of the information sent to your order handling system on a successful
transaction from an application on a mobile device.

cvv - 123
accountNum - <account number here>
paypageId - a2y4o6m8k0
id - 12345
orderId - order_123
reportGroup - *merchant1500
firstSix - 410000
lastFour - 0001
© 2022 FIS and/or its affiliates. All rights reserved.

 eProtect Integration Guide V4.19
111

Code Samples and Other Information

112
 A.3 cnpAPI Elements for eProtect

This section provides definitions for the elements used in the cnpAPI for eProtect transactions.

Use this information in combination with the various cnpAPI schema files to assist you as you build the
code necessary to submit eProtect transactions to our transaction processing systems. Each section
defines a particular element, its relationship to other elements (parents and children), as well as any
attributes associated with the element.

For additional information on the structure of cnpAPI requests and responses using these elements, as
well as XML examples, see Transaction Examples When Using cnpAPI on page 73. For a comprehensive
list of all cnpAPI elements and usage, see Chapter 4, “cnpAPI Elements” in the Worldpay eComm cnpAPI
Reference Guide.

The XML elements defined in this section are as follows (listed alphabetically):

• cardValidationNum

• checkoutId
• expDate
• paypage

• paypageRegistrationId
• registerTokenRequest
• registerTokenResponse

• token
© 2022 FIS and/or its affiliates. All rights reserved.

 eProtect Integration Guide V4.19

Code Samples and Other Information
 A.3.1 cardValidationNum
The <cardValidationNum> element is an optional child of the <card>, <paypage>, <token>,
<registerTokenRequest>, or <updateCardValidatinNumOnToken> element, which you use to
submit either the CVV2 (Visa), CVC2 (Mastercard), or CID (American Express and Discover) value.

When you submit the CVV2/CVC2/CID in a registerTokenRequest, our platform encrypts and stores
the value on a temporary basis (24 hours) for later use in a tokenized Authorization or Sale transaction
submitted without the value. This is done to accommodate merchant systems/workflows where the
security code is available at the time of token registration, but not at the time of the Auth/Sale. If for some
reason you need to change the value of the security code supplied at the time of the token registration,
use an <updateCardValidationNumOnToken> transaction. To use the stored value when submitting
an Auth/Sale transaction, set the <cardValidationNum> value to 000.

The cardValidationNum element is an optional child of the virtualGiftCardResponse element,
where it defines the value of the validation Number associated with the Virtual Gift Card requested

Type = String; minLength = N/A; maxLength = 4

Parent Elements:
card, paypage, token, registerTokenRequest, updateCardValidationNumOnToken,
virtualGiftCardResponse

Attributes:
None

Child Elements:
None

 A.3.2 checkoutId
The checkoutId element is an optional child of the token element specifying the low-value token
replacing the CVV value. You use this feature when you already have the consumer’s card (i.e., token) on
file, but wish the consumer to supply the CVV value for a new transaction. This LVT remains valid for 24
hours from the time of issue.

Type = String; minLength = 18; maxLength = 18

NOTE: Some American Express cards may have a 4-digit CID on the front of the card and/or a
3-digit CID on the back of the card. You can use either of the numbers for card validation, but not
both.

NOTE: The use of the <cardValidationNum> element in the registertokenRequest only
applies when you submit an <accountNumber> element.
© 2022 FIS and/or its affiliates. All rights reserved.

 eProtect Integration Guide V4.19
113

Code Samples and Other Information

114
Parent Elements:
token

Attributes:
None

Child Elements:

None
© 2022 FIS and/or its affiliates. All rights reserved.

 eProtect Integration Guide V4.19

Code Samples and Other Information
 A.3.3 expDate
The <expDate> element is a child of the <card>, <paypage>, <token>, or other element listed below,
which specifies the expiration date of the card and is required for card-not-present transactions.

Type = String; minLength = 4; maxLength = 4

Parent Elements:
card, newCardInfo, newCardTokenInfo, originalCard, originalCardInfo, originalCardTokenInfo,
originalToken, paypage, token, updatedCard, updatedToken

Attributes:
None

Child Elements:

None

NOTE: Although the schema defines the <expDate> element as an optional child of the <card>,
<token> and <paypage> elements, you must submit a value for card-not-present transactions.

NOTE: You should submit whatever expiration date you have on file, regardless of whether or not it
is expired/stale.

We recommend all merchant with recurring and/or installment payments participate in the Automatic
Account Updater program.
© 2022 FIS and/or its affiliates. All rights reserved.

 eProtect Integration Guide V4.19
115

Code Samples and Other Information

116
 A.3.4 paypage
The <paypage> element defines eProtect account information. It replaces the <card> or <token>
elements in transactions using the eProtect feature of the Vault solution.

Parent Elements:
authorization, sale, captureGivenAuth, forceCapture, credit, updateSubscription

Attributes:
None

Child Elements:
Required: paypageRegistrationId

Optional: cardValidationNum, expDate, type

Example: paypage Structure

<paypage>
<paypageRegistrationId>Registration ID from PayPage</paypageRegistrationId>
<expDate>Expiration Date</expDate>
<cardValidationNum>Card Validation Number</cardValidationNum>
<type>Method of Payment</type>

</paypage>

NOTE: Although the schema defines the <expDate> element as an optional child of the <card>,
<token> and <paypage> elements, you must submit a value for card-not-present transactions.
© 2022 FIS and/or its affiliates. All rights reserved.

 eProtect Integration Guide V4.19

Code Samples and Other Information
 A.3.5 paypageRegistrationId
The <paypageRegistrationId> element is a required child of the <paypage> element. It specifies
the Registration ID generated by eProtect. It can also be used in a Register Token Request to obtain a
token based on eProtect activity prior to submitting an Authorization or Sale transaction. If you are using
OmniTokens, the value is numeric only; otherwise it is alphanumeric.

Type = String; minLength = N/A; maxLength = 512

Parent Elements:
paypage, registerTokenRequest

Attributes:
None

Child Elements:

None
© 2022 FIS and/or its affiliates. All rights reserved.

 eProtect Integration Guide V4.19
117

Code Samples and Other Information

118
 A.3.6 registerTokenRequest
The <registerTokenRequest> element is the parent element for the Register Token transaction. You
use this transaction type when you wish to submit an account number or Registration Id for tokenization,
but there is no associated payment transaction.

You can use this element in either Online or Batch transactions.

Parent Elements:
cnpOnlineRequest, batchRequest

Attributes:

Child Elements:
Required: either accountNumber, mpos, echeckForToken, paypageRegistrationId, or applepay

Optional: orderId, cardValidationNum

NOTE: When submitting <registerTokenRequest> elements in a batchRequest, you must
also include a numTokenRegistrations= attribute in the <batchRequest> element.

Attribute Name Type Required? Description

id String No A unique identifier assigned by the presenter and mirrored
back in the response.

minLength = N/A maxLength = 25

customerId String No A value assigned by the merchant to identify the consumer.
minLength = N/A maxLength = 50

reportGroup String Yes Required attribute defining the merchant sub-group in
eCommerce iQ where this transaction displays.
minLength = 1 maxLength = 25

NOTE: The use of the <cardValidationNum> element in the <registertokenRequest> only
applies when you submit an <accountNumber> element.
© 2022 FIS and/or its affiliates. All rights reserved.

 eProtect Integration Guide V4.19

Code Samples and Other Information
 A.3.7 registerTokenResponse
The <registerTokenResponse> element is the parent element for the response to
<registerTokenRequest> transactions. You receive this transaction type in response to the
submission of an account number or registration ID for tokenization in a Register Token transaction.

Parent Elements:
cnpOnlineResponse, batchResponse

Attributes:

Child Elements:
Required: cnpTxnId, response, message, responseTime

Optional: eCheckAccountSuffix, cnpToken, bin, type, applepayResponse, androidpayResponse,
accountRangeId, location

Attribute Name Type Required? Description

id String No The response returns the same value submitted in the
registerTokenRequest transaction.

minLength = N/A maxLength = 25

customerId String No The response returns the same value submitted in the
registerTokenRequest transaction.
minLength = N/A maxLength = 50

reportGroup String Yes The response returns the same value submitted in the
registerTokenRequest transaction.
minLength = 1 maxLength = 25
© 2022 FIS and/or its affiliates. All rights reserved.

 eProtect Integration Guide V4.19
119

Code Samples and Other Information

120
 A.3.8 token
The token element replaces the card element in tokenized card transactions or the echeck element in
eCheck transactions, and defines the tokenized payment card/account information.

Parent Elements:
authorization, captureGivenAuth, credit, forceCapture, sale, accountUpdate, updateSubscription

Attributes:
None

Child Elements:
Required: cnpToken

Optional: expDate, cardValidationNum, type, checkoutId

Example: token Structure with CVV

<token>
<cnpToken>Token</cnpToken>
<expDate>Card Expiration Date</expDate>
<cardValidationNum>Card Validation Number</cardValidationNum>
<type>Method of Payment</type>

</token>

Example: token Structure with checkoutId instead of CVV

<token>
<cnpToken>Token</cnpToken>
<expDate>Card Expiration Date</expDate>
<type>Method of Payment</type>
<checkoutId>Low Value Token for CVV</checkoutId>

</token>

IMPORTANT: Although not a required element, Worldpay recommends you include the expDate
element. If you converted PAN information to tokens using the registerTokenRequest transaction,
we do not have the expDate value stored, so cannot add it to the transaction. Transactions without
expDate have a high likelihood of decline.
© 2022 FIS and/or its affiliates. All rights reserved.

 eProtect Integration Guide V4.19

© 2022 FIS and/or its affiliates. All rights reserved.

 eProtect Integration Guide V4.19
B

CSS Properties for iFrame API

This appendix provides a list of Cascading Style Sheet (CSS) properties, for use when creating your
iFrame implementation of eProtect, as listed in the CSS specification V1-3.

See the section Creating a Customized CSS for iFrame on page 18 before using the properties listed
here.

Except as marked (shaded items), the properties listed in the tables below are allowable when styling
your CSS for eProtect iFrame. Allowable values have been ‘white-listed’ programmatically. See
Table B-24, "CSS Properties Excluded From the White List (not allowed)" for more information.

CSS Properties not listed - there may be properties not listed in this appendix that you wish to use when
creating your style sheet. We do not list every non-allowed CSS property, just those that we explicitly
black-list (or that are ‘excluded from the white-list’). There may be an opportunity to evaluate new CSS
properties to add to the white-list. Please contact your Implementation Consultant to initiate a request for
future development consideration of CSS properties.

NOTE: If you are evaluating your styling options and/or having trouble creating your own style
sheet, Worldpay can provide sample CSS files. Please contact your assigned Implementation
Consultant for sample CSS files.
121

CSS Properties for iFrame API

122
 B.1 CSS Property Groups

For additional detail on each property type, click the desired link below to navigate to the corresponding
section:

• Color Properties • Table Properties • Generated Content for
Paged Media

• Background and Border
Properties

• Lists and Counters
Properties

• Filter Effects Properties

• Basic Box Properties • Animation Properties • Image Values and
Replaced Content

• Flexible Box Layout • Transform Properties • Masking Properties

• Text Properties • Transitions Properties • Speech Properties

• Text Decoration
Properties

• Basic User Interface
Properties

• Marquee Properties

• Font Properties • Multi-Column Layout
Properties

• Appearance Properties

• Writing Modes
Properties

• Paged Media

TABLE B-1 Color Properties

Property Description

color Sets the color of text

opacity Sets the opacity level for an element

TABLE B-2 Background and Border Properties

Property Description

background

(Do not use)
Sets all the background properties in one declaration

background-attachment

(Do not use)
Sets whether a background image is fixed or scrolls with the rest
of the page

background-color Sets the background color for an element

background-image Sets the background image for an element
© 2022 FIS and/or its affiliates. All rights reserved.

 eProtect Integration Guide V4.19

CSS Properties for iFrame API
background-position

(Do not use)
Sets the starting position of a background image

background-repeat

(Do not use)
Sets how a background image will be repeated

background-clip Specifies the painting area of the background

background-origin

(Do not use)
Specifies the positioning area of the background images

background-size

(Do not use)
Specifies the size of the background images

border Sets all the border properties in one declaration

border-bottom Sets all the bottom border properties in one declaration

border-bottom-color Sets the color of the bottom border

border-bottom-left-radius Defines the shape of the border of the bottom-left corner

border-bottom-right-radius Defines the shape of the border of the bottom-right corner

border-bottom-style Sets the style of the bottom border

border-bottom-width Sets the width of the bottom border

border-color Sets the color of the four borders

border-image

(Do not use)
A shorthand property for setting all the border-image-*
properties

border-image-outset

(Do not use)
Specifies the amount by which the border image area extends
beyond the border box

border-image-repeat

(Do not use)
Specifies whether the image-border should be repeated,
rounded or stretched

border-image-slice Specifies the inward offsets of the image-border

border-image-source

(Do not use)
Specifies an image to be used as a border

border-image-width

(Do not use)
Specifies the widths of the image-border

border-left Sets all the left border properties in one declaration

border-left-color Sets the color of the left border

border-left-style Sets the style of the left border

TABLE B-2 Background and Border Properties (Continued)

Property Description
© 2022 FIS and/or its affiliates. All rights reserved.

 eProtect Integration Guide V4.19
123

CSS Properties for iFrame API

124
border-left-width Sets the width of the left border

border-radius A shorthand property for setting all the four border-*-radius
properties

border-right Sets all the right border properties in one declaration

border-right-color Sets the color of the right border

border-right-style Sets the style of the right border

border-right-width Sets the width of the right border

border-style Sets the style of the four borders

border-top Sets all the top border properties in one declaration

border-top-color Sets the color of the top border

border-top-left-radius Defines the shape of the border of the top-left corner

border-top-right-radius Defines the shape of the border of the top-right corner

border-top-style Sets the style of the top border

border-top-width Sets the width of the top border

border-width Sets the width of the four borders

box-decoration-break Sets the behavior of the background and border of an element
at page-break, or, for in-line elements, at line-break.

box-shadow Attaches one or more drop-shadows to the box

TABLE B-3 Basic Box Properties

Property Description

bottom Specifies the bottom position of a positioned element

clear Specifies which sides of an element where other floating
elements are not allowed

clip Clips an absolutely positioned element

display Specifies how a certain HTML element should be displayed

float Specifies whether or not a box should float

height Sets the height of an element

left Specifies the left position of a positioned element

overflow Specifies what happens if content overflows an element's box

TABLE B-2 Background and Border Properties (Continued)

Property Description
© 2022 FIS and/or its affiliates. All rights reserved.

 eProtect Integration Guide V4.19

CSS Properties for iFrame API
overflow-x Specifies whether or not to clip the left/right edges of the
content, if it overflows the element's content area

overflow-y Specifies whether or not to clip the top/bottom edges of the
content, if it overflows the element's content area

padding Sets all the padding properties in one declaration

padding-bottom Sets the bottom padding of an element

padding-left Sets the left padding of an element

padding-right Sets the right padding of an element

padding-top Sets the top padding of an element

position Specifies the type of positioning method used for an element
(static, relative, absolute or fixed)

right Specifies the right position of a positioned element

top Specifies the top position of a positioned element

visibility Specifies whether or not an element is visible

width Sets the width of an element

vertical-align Sets the vertical alignment of an element

z-index Sets the stack order of a positioned element

TABLE B-4 Flexible Box Layout

Property Description

align-content Specifies the alignment between the lines inside a flexible
container when the items do not use all available space.

align-items Specifies the alignment for items inside a flexible container.

align-self Specifies the alignment for selected items inside a flexible
container.

display Specifies how a certain HTML element should be displayed

flex Specifies the length of the item, relative to the rest

flex-basis Specifies the initial length of a flexible item

flex-direction Specifies the direction of the flexible items

flex-flow A shorthand property for the flex-direction and the flex-wrap
properties

flex-grow Specifies how much the item will grow relative to the rest

TABLE B-3 Basic Box Properties (Continued)

Property Description
© 2022 FIS and/or its affiliates. All rights reserved.

 eProtect Integration Guide V4.19
125

CSS Properties for iFrame API

126
flex-shrink Specifies how the item will shrink relative to the rest

flex-wrap Specifies whether the flexible items should wrap or not

justify-content Specifies the alignment between the items inside a flexible
container when the items do not use all available space.

margin Sets all the margin properties in one declaration

margin-bottom Sets the bottom margin of an element

margin-left Sets the left margin of an element

margin-right Sets the right margin of an element

margin-top Sets the top margin of an element

max-height Sets the maximum height of an element

max-width Sets the maximum width of an element

min-height Sets the minimum height of an element

min-width Sets the minimum width of an element

order Sets the order of the flexible item, relative to the rest

TABLE B-5 Text Properties

Property Description

hanging-punctuation Specifies whether a punctuation character may be placed
outside the line box

hyphens Sets how to split words to improve the layout of paragraphs

letter-spacing Increases or decreases the space between characters in a
text

line-break Specifies how/if to break lines

line-height Sets the line height

overflow-wrap Specifies whether or not the browser may break lines within
words in order to prevent overflow (when a string is too long
to fit its containing box)

tab-size Specifies the length of the tab-character

text-align Specifies the horizontal alignment of text

text-align-last Describes how the last line of a block or a line right before a
forced line break is aligned when text-align is “justify”

TABLE B-4 Flexible Box Layout (Continued)

Property Description
© 2022 FIS and/or its affiliates. All rights reserved.

 eProtect Integration Guide V4.19

CSS Properties for iFrame API
text-combine-upright Specifies the combination of multiple characters into the
space of a single character

text-indent Specifies the indentation of the first line in a text-block

text-justify Specifies the justification method used when text-align is
“justify”

text-transform Controls the capitalization of text

white-space Specifies how white-space inside an element is handled

word-break Specifies line breaking rules for non-CJK scripts

word-spacing Increases or decreases the space between words in a text

word-wrap Allows long, unbreakable words to be broken and wrap to the
next line

TABLE B-6 Text Decoration Properties

Property Description

text-decoration Specifies the decoration added to text

text-decoration-color Specifies the color of the text-decoration

text-decoration-line Specifies the type of line in a text-decoration

text-decoration-style Specifies the style of the line in a text decoration

text-shadow Adds shadow to text

text-underline-position Specifies the position of the underline which is set using the
text-decoration property

TABLE B-7 Font Properties

Property Description

@font-face

(Do not use)
A rule that allows websites to download and use fonts other
than the “web-safe” fonts

@font-feature-values Allows authors to use a common name in
font-variant-alternate for feature activated differently in
OpenType

font Sets all the font properties in one declaration

font-family Specifies the font family for text

TABLE B-5 Text Properties (Continued)

Property Description
© 2022 FIS and/or its affiliates. All rights reserved.

 eProtect Integration Guide V4.19
127

CSS Properties for iFrame API

128
font-feature-settings Allows control over advanced typographic features in
OpenType fonts

font-kerning Controls the usage of the kerning information (how letters are
spaced)

font-language-override Controls the usage of language-specific glyphs in a typeface

font-size Specifies the font size of text

font-size-adjust Preserves the readability of text when font fallback occurs

font-stretch Selects a normal, condensed, or expanded face from a font
family

font-style Specifies the font style for text

font-synthesis Controls which missing typefaces (bold or italic) may be
synthesized by the browser

font-variant Specifies whether or not a text should be displayed in a
small-caps font

font-variant-alternates Controls the usage of alternate glyphs associated to
alternative names defined in @font-feature-values

font-variant-caps Controls the usage of alternate glyphs for capital letters

font-variant-east-asian Controls the usage of alternate glyphs for East Asian scripts
(e.g Japanese and Chinese)

font-variant-ligatures Controls which ligatures and contextual forms are used in
textual content of the elements it applies to

font-variant-numeric Controls the usage of alternate glyphs for numbers, fractions,
and ordinal markers

font-variant-position Controls the usage of alternate glyphs of smaller size
positioned as superscript or subscript regarding the baseline
of the font

font-weight Specifies the weight of a font

TABLE B-8 Writing Modes Properties

Property Description

direction Specifies the text direction/writing direction

text-orientation Defines the orientation of the text in a line

text-combine-upright Specifies the combination of multiple characters into the
space of a single character

TABLE B-7 Font Properties (Continued)

Property Description
© 2022 FIS and/or its affiliates. All rights reserved.

 eProtect Integration Guide V4.19

CSS Properties for iFrame API
unicode-bidi Used together with the direction property to set or return
whether the text should be overridden to support multiple
languages in the same document

writing-mode

TABLE B-9 Table Properties

Property Description

border-collapse Specifies whether or not table borders should be collapsed

border-spacing Specifies the distance between the borders of adjacent cells

caption-side Specifies the placement of a table caption

empty-cells Specifies whether or not to display borders and background
on empty cells in a table

table-layout Sets the layout algorithm to be used for a table

TABLE B-10 Lists and Counters Properties

Property Description

counter-increment Increments one or more counters

counter-reset Creates or resets one or more counters

list-style Sets all the properties for a list in one declaration

list-style-image

(Do not use)
Specifies an image as the list-item marker

list-style-position Specifies if the list-item markers should appear inside or
outside the content flow

list-style-type Specifies the type of list-item marker

TABLE B-11 Animation Properties

Property Description

@frames Specifies the animation

animation A shorthand property for all the animation properties below,
except the animation-play-state property

animation-delay Specifies when the animation will start

TABLE B-8 Writing Modes Properties (Continued)

Property Description
© 2022 FIS and/or its affiliates. All rights reserved.

 eProtect Integration Guide V4.19
129

CSS Properties for iFrame API

130
animation-direction Specifies whether or not the animation should play in reverse
on alternate cycles

animation-duration Specifies how many seconds or milliseconds an animation
takes to complete one cycle

animation-fill-mode Specifies what values are applied by the animation outside
the time it is executing

animation-iteration-count Specifies the number of times an animation should be played

animation-name Specifies a name for the @frames animation

animation-timing-function Specifies the speed curve of the animation

animation-play-state Specifies whether the animation is running or paused

TABLE B-12 Transform Properties

Property Description

backface-visibility Defines whether or not an element should be visible when not
facing the screen

perspective Specifies the perspective on how 3D elements are viewed

perspective-origin Specifies the bottom position of 3D elements

transform Applies a 2D or 3D transformation to an element

transform-origin Allows you to change the position on transformed elements

transform-style Specifies how nested elements are rendered in 3D space

TABLE B-13 Transitions Properties

Property Description

transition A shorthand property for setting the four transition properties

transition-property Specifies the name of the CSS property the transition effect is
for

transition-duration Specifies how many seconds or milliseconds a transition
effect takes to complete

transition-timing-function Specifies the speed curve of the transition effect

transition-delay Specifies when the transition effect will start

TABLE B-11 Animation Properties (Continued)

Property Description
© 2022 FIS and/or its affiliates. All rights reserved.

 eProtect Integration Guide V4.19

CSS Properties for iFrame API
TABLE B-14 Basic User Interface Properties

Property Description

box-sizing Tells the browser what the sizing properties (width and height)
should include

content Used with the :before and :after pseudo-elements, to insert
generated content

cursor

(Do not use)
Specifies the type of cursor to be displayed

icon

(Do not use)
Provides the author the ability to style an element with an
iconic equivalent

ime-mode Controls the state of the input method editor for text fields

nav-down Specifies where to navigate when using the arrow-down
navigation

nav-index Specifies the tabbing order for an element

nav-left Specifies where to navigate when using the arrow-left
navigation

nav-right Specifies where to navigate when using the arrow-right
navigation

nav-up Specifies where to navigate when using the arrow-up
navigation

outline Sets all the outline properties in one declaration

outline-color Sets the color of an outline

outline-offset Offsets an outline, and draws it beyond the border edge

outline-style Sets the style of an outline

outline-width Sets the width of an outline

resize Specifies whether or not an element is resizable by the user

text-overflow Specifies what should happen when text overflows the
containing element

TABLE B-15 Multi-Column Layout Properties

Property Description

break-after Specifies the page-, column-, or region-break behavior after
the generated box

break-before Specifies the page-, column-, or region-break behavior before
the generated box
© 2022 FIS and/or its affiliates. All rights reserved.

 eProtect Integration Guide V4.19
131

CSS Properties for iFrame API

132
break-inside Specifies the page-, column-, or region-break behavior inside
the generated box

column-count Specifies the number of columns an element should be
divided into

column-fill Specifies how to fill columns

column-gap Specifies the gap between the columns

column-rule A shorthand property for setting all the column-rule-*
properties

column-rule-color Specifies the color of the rule between columns

column-rule-style Specifies the style of the rule between columns

column-rule-width Specifies the width of the rule between columns

column-span Specifies how many columns an element should span across

column-width Specifies the width of the columns

columns A shorthand property for setting column-width and
column-count

widows Sets the minimum number of lines that must be left at the top
of a page when a page break occurs inside an element

TABLE B-16 Paged Media

Property Description

orphans Sets the minimum number of lines that must be left at the
bottom of a page when a page break occurs inside an
element

page-break-after Sets the page-breaking behavior after an element

page-break-before Sets the page-breaking behavior before an element

page-break-inside Sets the page-breaking behavior inside an element

TABLE B-17 Generated Content for Paged Media

Property Description

marks Adds crop and/or cross marks to the document

quotes Sets the type of quotation marks for embedded quotations

TABLE B-15 Multi-Column Layout Properties (Continued)

Property Description
© 2022 FIS and/or its affiliates. All rights reserved.

 eProtect Integration Guide V4.19

CSS Properties for iFrame API
TABLE B-18 Filter Effects Properties

Property Description

filter Defines effects (e.g. blurring or color shifting) on an element
before the element is displayed

TABLE B-19 Image Values and Replaced Content

Property Description

image-orientation Specifies a rotation in the right or clockwise direction that a
user agent applies to an image (This property is likely going to
be deprecated and its functionality moved to HTML)

image-rendering Gives a hint to the browser about what aspects of an image
are most important to preserve when the image is scaled

image-resolution Specifies the intrinsic resolution of all raster images used
in/on the element

object-fit Specifies how the contents of a replaced element should be
fitted to the box established by its used height and width

object-position Specifies the alignment of the replaced element inside its box

TABLE B-20 Masking Properties

Property Description

mask

mask-type

TABLE B-21 Speech Properties

Property Description

mark A shorthand property for setting the mark-before and
mark-after properties

mark-after Allows named markers to be attached to the audio stream

mark-before Allows named markers to be attached to the audio stream

phonemes Specifies a phonetic pronunciation for the text contained by
the corresponding element

rest A shorthand property for setting the rest-before and rest-after
properties
© 2022 FIS and/or its affiliates. All rights reserved.

 eProtect Integration Guide V4.19
133

CSS Properties for iFrame API

134
rest-after Specifies a rest or prosodic boundary to be observed after
speaking an element's content

rest-before Specifies a rest or prosodic boundary to be observed before
speaking an element's content

voice-balance Specifies the balance between left and right channels

voice-duration Specifies how long it should take to render the selected
element's content

voice-pitch Specifies the average pitch (a frequency) of the speaking
voice

voice-pitch-range Specifies variation in average pitch

voice-rate Controls the speaking rate

voice-stress Indicates the strength of emphasis to be applied

voice-volume Refers to the amplitude of the waveform output by the speech
synthesises

TABLE B-22 Marquee Properties

Property Description

marquee-direction Sets the direction of the moving content

marquee-play-count Sets how many times the content move

marquee-speed Sets how fast the content scrolls

marquee-style Sets the style of the moving content

TABLE B-23 Appearance Properties

Property Description

webkit-appearance Used by WebKit-based (e.g., Safari) and Blink-based (e.g.,
Chrome, Opera) browsers to display an element using
platform-native styling based on the operating system's
theme.

moz-appearance Used in Firefox to display an element using platform-native
styling based on the operating system's theme.

appearance Allows you to make an element look like a standard user
interface element.

TABLE B-21 Speech Properties (Continued)

Property Description
© 2022 FIS and/or its affiliates. All rights reserved.

 eProtect Integration Guide V4.19

CSS Properties for iFrame API
 B.2 Properties Excluded From White List

Table B-24 lists the CSS Properties that are not permitted for use when building a CSS for eProtect
iFrame.

TABLE B-24 CSS Properties Excluded From the White List (not allowed)

Property Name Why excluded from white list?

background The other properties of background like color or size can still
be set with the more specific properties

background-attachment Only makes sense in the context of background-image

background-image Allows URL

background-origin Only makes sense in the context of background-position

background-position Only makes sense in the context of background-image

background-repeat Only makes sense in the context of background-image

background-size Only makes sense in the context of background-image

border-image This also includes the extensions like -webkit-border-image
and -o-border-image

border-image-outset Only makes sense in the context of border-image

border-image-repeat Only makes sense in the context of border-image

border-image-source Allows URL

border-image-width Only makes sense in the context of border-image

@font-face Allows URL

list-style-image Allows URL

cursor Allows URL

icon Allows URL
© 2022 FIS and/or its affiliates. All rights reserved.

 eProtect Integration Guide V4.19
135

CSS Properties for iFrame API

136

© 2022 FIS and/or its affiliates. All rights reserved.

 eProtect Integration Guide V4.19

© 2022 FIS and/or its affiliates. All rights reserved.

 eProtect Integration Guide V4.19
C

Sample eProtect Integration Checklist

This appendix provides a sample of the eProtect Integration Checklist for use during your Implementation
process. It is intended to provide information to Worldpay on your eProtect setup.
137

Sample eProtect Integration Checklist

138
FIGURE C-1 Sample eProtect Integration Checklist

eProtect Integration Checklist
This document is intended to provide information to Worldpay on your eProtect setup. Please complete and send a
copy to your Worldpay Conversion Manager or eProtect Implementation Consultant prior to going live. This will be
kept on file and used in the event of issues with eProtect production processing.

Merchant/Organization __________________________Contact Name_______________________________

Phone__________________________________Date Completed____________________________________

1. What timeout value do you plan to use in the event of an eProtect transaction timeout?
We recommend a timeout value of 15000 (15 seconds). This value is based on data that only 1% of traffic exceeds
five seconds. If you set your timeout value at 5000 (five seconds), we recommend that you follow up with a longer
15-second timeout value. See the section on Setting Timeout Values in the Worldpay eProtect Integration Guide.

____ 15000 (15 seconds) – recommended, where the timeout callback stops the transaction.

____ Other: ______________________

2. Which unique identifier(s) do you plan to send with each eProtect Request? (Check all that apply.)
The values for either the <merchantTxnId> or the <orderId> must be unique so that we can use these
identifiers for reconciliation or troubleshooting. You can code your systems to send either or both.

____ orderID

____ merchantTxnId

3. What diagnostic information do you plan to collect in the event of a failed eProtect transaction? (Check all
that apply.)
In order to assist us in determining the cause of failed eProtect transactions, we request that you collect some or all
of the following diagnostic information when you encounter a failure. You will be asked to provide it to your
Implementation Analyst (if you are currently in testing and certification) or Customer Support (if you are currently
in production).

____ Error code returned and reason for the failure. For example, JavaScript was disabled on the customer’s
browser, or could not loaded, or did not return a response, etc.
____ The orderId for the transaction.

____ The merchantTxnId for the transaction.

____ Where in the process the failure occurred.

____ Information about the customer’s browser, including the version.
© 2022 FIS and/or its affiliates. All rights reserved.

 eProtect Integration Guide V4.19

Index
Index

A

Apple Pay
data/transaction flow, 62, 66
using mobile API, 61

Apple Pay Web, 8
compatible devices, 8
data/transaction flow, customer Browser

JavaScript API, 38
Authorizations

request structure, 74
response structure, 75

Availability of the PayPage API
detecting, 36

C

Callbacks
failure, 35
handling, 34
success, 34
timeout, 36

Capture Given Auth Transactions, 84
request structure, 84
response structure, 86

Checkout Form Submission
intercepting, 34

cnpAPI Elements
checkoutId, 113
expDate, 115
paypage, 113
paypageRegistrationId, 117
registerTokenRequest, 118
registerTokenResponse, 119
token, 120

Collecting Diagnostic Information, 72
Contact Information, xii
Credit Transactions, 87

request structure, 87
response structure, 88

CSS Properties for iFrame API, 121

D

Diagnostic Information
collecting, 72

Document Structure, xi
Documentation Set, xi
Duplicate Detection, 15

E

eProtect
Getting Started, 6
How it works, 5
Overview, 2

expDate, 115

F

Force Capture Transactions, 81
request structure, 82
response structure, 83

H

Handling Errors - iFrame Version 3, 55
Handling Errors - iFrame Version 4, 55
HTML Checkout Page Examples, 96

JavaScript API-Integrated Checkout page, 97
Non-eProtect Checkout Page, 96
Version 3 Hosted iFrame-Integrated Checkout

Page, 100
Version 4 Hosted iFrame-Integrated Checkout

Page, 105

I

iFrame Accessibility, 25
iFrame API, 2

integrating into your checkout page, 42
Integration Steps, 28
Intended Audience, vii

J

JavaScript Customer Browser API, 2
jQuery Version, 11
© 2022 FIS and/or its affiliates. All rights reserved.

 eProtect Integration Guide V4.19
139

Index

140
L

Loading the PayPage API, 29

M

Migrating From Previous Versions, 6
from JavaScript Browser API to iFrame, 6
from PayPage with jQuery 1.4.2, 6

Mobile API, 2, 58
Information Sent, 111

Mobile Application
Integrating eProtect, 58

Mobile Operating System Compatibility, 7
Mouse Click

handling, 31

N

Non-eProtect Checkout Page, 96

O

Online Authorization Request, 74
Online Authorization Response, 76
Online Sale Request, 77
Online Sale Response, 79
Order Handling Systems

Information Sent, 110

P

PayPage API Request Fields
specifying, 30

PayPage API Response Fields
specifying, 31

paypageRegistrationId, 117
PCI Non-Sensitive Value Feature, 49
POST

Sample Response, 59
POST Request, 58

R

Register Token Transactions, 80
request structure, 80
response structure, 81

registerTokenRequest, 118
registerTokenResponse, 119

Registration ID Duplicate Detection, 15
Response Codes, 13
Revision History, vii

S

Sale Transactions, 77
request structure, 77
response structure, 78

Sample JavaScripts, 11

T

Testing and Certification, 73
Testing PayPage Transactions, 91
token, 120
Transactions

authorization, 74
capture given auth, 84
credit, 87
force Capture, 81
register token, 80
sale, 77
types, 73

V

Visa Checkout
eProtect Support, 9
getting started, 9
requirements for use, 10
using the Customer Browser JavaScript

API, 39
© 2022 FIS and/or its affiliates. All rights reserved.

 eProtect Integration Guide V4.19

	eProtect Integration Guide
	About This Guide
	Intended Audience
	Revision History
	Document Structure
	Documentation Set
	Typographical Conventions
	Contact Information

	1 Introduction
	1.1 eProtect Overview
	1.1.1 Using eProtect with ISO 8583, 610 and HHMI

	1.2 How eProtect Works
	1.3 Getting Started with eProtect
	1.3.1 Migrating From Previous Versions of the eProtect API
	1.3.2 Browser and Mobile Operating System Compatibility
	1.3.3 eProtect Support for Apple Pay™ / Apple Pay on the Web
	1.3.4 eProtect Support for Google Pay™
	1.3.5 eProtect Support for Visa Checkout™
	1.3.6 jQuery Version
	1.3.7 Certification and Testing Environments
	1.3.8 Transitioning from Certification to Production
	1.3.9 eProtect-Specific Response Codes
	1.3.10 eProtect Registration ID Duplicate Detection
	1.3.11 Setting Timeout Values

	1.4 Creating a Customized CSS for iFrame
	1.4.1 CSS iFrame Validation and Customization Features
	1.4.2 Using Web Developer Tools
	1.4.3 Reviewing your CSS with Worldpay

	1.5 iFrame Accessibility

	2 Integration and Testing
	2.1 Integrating Customer Browser JavaScript API Into Your Checkout Page
	2.1.1 Integration Steps
	2.1.2 Loading the eProtect API and jQuery
	2.1.3 Specifying the eProtect API Request Fields
	2.1.4 Specifying the eProtect API Response Fields
	2.1.5 Handling the Mouse Click
	2.1.6 Intercepting the Checkout Form Submission
	2.1.7 Handling Callbacks for Success, Failure, and Timeout
	2.1.8 Detecting the Availability of the eProtect API
	2.1.9 Using the Customer Browser JavaScript API for Apple Pay on the Web
	2.1.10 Using the Customer Browser JavaScript API for Visa Checkout
	2.1.11 Adding Visa Checkout to the eProtect Customer Browser JavaScript API

	2.2 Integrating iFrame into your Checkout Page
	2.2.1 Integration Steps
	2.2.2 Loading the iFrame
	2.2.3 Configuring the iFrame
	2.2.4 Capturing the Enter Event from the iFrame
	2.2.5 Calling the iFrame for the Registration ID
	2.2.6 Calling the iFrame for the Checkout ID
	2.2.7 Calling the iFrame for the Checkout PIN
	2.2.8 Calling the iFrame for the Registration ID and Checkout PIN
	2.2.9 Handling Callbacks

	2.3 Integrating eProtect Into Your Mobile Application
	2.3.1 Creating the POST Request
	2.3.2 Using the Worldpay Mobile API for Apple Pay
	2.3.3 Using the Worldpay Mobile API for Visa Checkout
	2.3.4 Using the Worldpay Mobile API for Google Pay
	2.3.5 Recurring Payments with Apple Pay and Google Pay

	2.4 Collecting Diagnostic Information
	2.5 Transaction Examples When Using cnpAPI
	2.5.1 Transaction Types and Examples
	2.5.2 Authorization Transactions
	2.5.3 Sale Transactions
	2.5.4 Register Token Transactions
	2.5.5 Force Capture Transactions
	2.5.6 Capture Given Auth Transactions
	2.5.7 Credit Transactions

	2.6 Testing and Certification
	2.6.1 Testing eProtect Transactions

	A Code Samples and Other Information
	A.1 HTML Checkout Page Examples
	A.1.1 HTML Example for Non-eProtect Checkout Page
	A.1.2 HTML Example for JavaScript API-Integrated Checkout Page
	A.1.3 HTML Example for Version 3 Hosted iFrame-Integrated Checkout Page
	A.1.4 HTML Example for Version 4 Hosted iFrame-Integrated Checkout Page

	A.2 Information Sent to Order Processing Systems
	A.2.1 Information Sent Without Integrating eProtect
	A.2.2 Information Sent with Browser-Based eProtect Integration
	A.2.3 Information Sent with Mobile API-Based Application Integration

	A.3 cnpAPI Elements for eProtect
	A.3.1 cardValidationNum
	A.3.2 checkoutId
	A.3.3 expDate
	A.3.4 paypage
	A.3.5 paypageRegistrationId
	A.3.6 registerTokenRequest
	A.3.7 registerTokenResponse
	A.3.8 token

	B CSS Properties for iFrame API
	B.1 CSS Property Groups
	B.2 Properties Excluded From White List

	C Sample eProtect Integration Checklist
	Index

